--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner2 results: [] --- # bert-finetuned-ner2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1749 - Precision: 0.5751 - Recall: 0.6210 - F1: 0.5972 - Accuracy: 0.9453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 97 | 0.2560 | 0.4434 | 0.5933 | 0.5075 | 0.9187 | | No log | 2.0 | 194 | 0.1889 | 0.5398 | 0.5927 | 0.5650 | 0.9385 | | No log | 3.0 | 291 | 0.1749 | 0.5751 | 0.6210 | 0.5972 | 0.9453 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.2