--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-ewe-50-hours results: [] --- [Visualize in Weights & Biases](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/dzsfyaur) # wav2vec2-xls-r-ewe-50-hours This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8057 - Wer: 0.3383 - Cer: 0.0967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 11.6182 | 3.3670 | 500 | 2.5123 | 1.0 | 0.6328 | | 1.3765 | 6.7340 | 1000 | 0.3954 | 0.3612 | 0.1030 | | 0.8498 | 10.1010 | 1500 | 0.3698 | 0.3378 | 0.0963 | | 0.7262 | 13.4680 | 2000 | 0.3916 | 0.3283 | 0.0956 | | 0.6137 | 16.8350 | 2500 | 0.3981 | 0.3335 | 0.0971 | | 0.52 | 20.2020 | 3000 | 0.4405 | 0.3467 | 0.0999 | | 0.4375 | 23.5690 | 3500 | 0.4442 | 0.3506 | 0.1038 | | 0.3707 | 26.9360 | 4000 | 0.5235 | 0.3471 | 0.0997 | | 0.2992 | 30.3030 | 4500 | 0.5823 | 0.3550 | 0.1009 | | 0.2632 | 33.6700 | 5000 | 0.6557 | 0.3449 | 0.0984 | | 0.2181 | 37.0370 | 5500 | 0.6931 | 0.3412 | 0.0971 | | 0.1888 | 40.4040 | 6000 | 0.7232 | 0.3420 | 0.0980 | | 0.1653 | 43.7710 | 6500 | 0.7812 | 0.3394 | 0.0963 | | 0.1463 | 47.1380 | 7000 | 0.8057 | 0.3383 | 0.0967 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3