--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v1 results: [] --- # whisper-small-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9074 - Wer: 0.2063 - Cer: 0.0793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 1.4677 | 1.0 | 2880 | 0.7253 | 0.6948 | 0.3565 | | 0.6293 | 2.0 | 5760 | 0.5281 | 0.5550 | 0.3003 | | 0.4895 | 3.0 | 8640 | 0.4502 | 0.4045 | 0.2119 | | 0.3993 | 4.0 | 11520 | 0.4109 | 0.4834 | 0.2918 | | 0.3241 | 5.0 | 14400 | 0.3989 | 0.4870 | 0.2655 | | 0.2551 | 6.0 | 17280 | 0.4082 | 0.4294 | 0.2432 | | 0.1918 | 7.0 | 20160 | 0.4232 | 0.3710 | 0.1913 | | 0.1369 | 8.0 | 23040 | 0.4381 | 0.4223 | 0.2191 | | 0.0967 | 9.0 | 25920 | 0.4774 | 0.3570 | 0.1636 | | 0.0709 | 10.0 | 28800 | 0.4869 | 0.3268 | 0.1283 | | 0.0544 | 11.0 | 31680 | 0.5251 | 0.2836 | 0.1034 | | 0.04 | 12.0 | 34560 | 0.5354 | 0.2856 | 0.1043 | | 0.0309 | 13.0 | 37440 | 0.5464 | 0.2683 | 0.0985 | | 0.0247 | 14.0 | 40320 | 0.5621 | 0.2640 | 0.0933 | | 0.021 | 15.0 | 43200 | 0.5743 | 0.2510 | 0.0862 | | 0.0185 | 16.0 | 46080 | 0.5972 | 0.2540 | 0.0893 | | 0.0161 | 17.0 | 48960 | 0.5969 | 0.2399 | 0.0820 | | 0.0143 | 18.0 | 51840 | 0.6073 | 0.2394 | 0.0805 | | 0.013 | 19.0 | 54720 | 0.6256 | 0.2350 | 0.0814 | | 0.0117 | 20.0 | 57600 | 0.6198 | 0.2298 | 0.0800 | | 0.0103 | 21.0 | 60480 | 0.6410 | 0.2330 | 0.0830 | | 0.0097 | 22.0 | 63360 | 0.6626 | 0.2373 | 0.0821 | | 0.009 | 23.0 | 66240 | 0.6666 | 0.2279 | 0.0770 | | 0.0083 | 24.0 | 69120 | 0.6686 | 0.2269 | 0.0779 | | 0.0075 | 25.0 | 72000 | 0.6851 | 0.2220 | 0.0793 | | 0.0071 | 26.0 | 74880 | 0.6944 | 0.2261 | 0.0784 | | 0.0065 | 27.0 | 77760 | 0.7010 | 0.2240 | 0.0793 | | 0.0058 | 28.0 | 80640 | 0.6999 | 0.2282 | 0.0812 | | 0.0055 | 29.0 | 83520 | 0.7135 | 0.2208 | 0.0778 | | 0.0054 | 30.0 | 86400 | 0.7268 | 0.2240 | 0.0806 | | 0.0047 | 31.0 | 89280 | 0.7210 | 0.2208 | 0.0774 | | 0.0045 | 32.0 | 92160 | 0.7255 | 0.2180 | 0.0776 | | 0.0045 | 33.0 | 95040 | 0.7512 | 0.2179 | 0.0776 | | 0.0037 | 34.0 | 97920 | 0.7662 | 0.2177 | 0.0812 | | 0.0038 | 35.0 | 100800 | 0.7562 | 0.2087 | 0.0757 | | 0.0036 | 36.0 | 103680 | 0.7524 | 0.2093 | 0.0740 | | 0.0033 | 37.0 | 106560 | 0.7719 | 0.2136 | 0.0783 | | 0.003 | 38.0 | 109440 | 0.7792 | 0.2149 | 0.0764 | | 0.0029 | 39.0 | 112320 | 0.7883 | 0.2135 | 0.0761 | | 0.0029 | 40.0 | 115200 | 0.7960 | 0.2098 | 0.0750 | | 0.0026 | 41.0 | 118080 | 0.7779 | 0.2072 | 0.0750 | | 0.0026 | 42.0 | 120960 | 0.7881 | 0.2155 | 0.0784 | | 0.0024 | 43.0 | 123840 | 0.7936 | 0.2076 | 0.0740 | | 0.0022 | 44.0 | 126720 | 0.8039 | 0.2071 | 0.0735 | | 0.0022 | 45.0 | 129600 | 0.8125 | 0.2055 | 0.0740 | | 0.0021 | 46.0 | 132480 | 0.8248 | 0.2118 | 0.0749 | | 0.0019 | 47.0 | 135360 | 0.8211 | 0.2119 | 0.0777 | | 0.0017 | 48.0 | 138240 | 0.8212 | 0.2100 | 0.0783 | | 0.0019 | 49.0 | 141120 | 0.8303 | 0.2052 | 0.0744 | | 0.0018 | 50.0 | 144000 | 0.8337 | 0.2059 | 0.0761 | | 0.0016 | 51.0 | 146880 | 0.8529 | 0.2100 | 0.0776 | | 0.0013 | 52.0 | 149760 | 0.8497 | 0.2109 | 0.0788 | | 0.0014 | 53.0 | 152640 | 0.8656 | 0.2115 | 0.0777 | | 0.0013 | 54.0 | 155520 | 0.8556 | 0.2068 | 0.0784 | | 0.0012 | 55.0 | 158400 | 0.8539 | 0.2058 | 0.0777 | | 0.0012 | 56.0 | 161280 | 0.8640 | 0.2006 | 0.0730 | | 0.0011 | 57.0 | 164160 | 0.8455 | 0.2037 | 0.0770 | | 0.0011 | 58.0 | 167040 | 0.8684 | 0.2068 | 0.0778 | | 0.001 | 59.0 | 169920 | 0.8569 | 0.2057 | 0.0771 | | 0.0009 | 60.0 | 172800 | 0.8669 | 0.2023 | 0.0741 | | 0.001 | 61.0 | 175680 | 0.8780 | 0.2069 | 0.0785 | | 0.0008 | 62.0 | 178560 | 0.8928 | 0.2068 | 0.0763 | | 0.0007 | 63.0 | 181440 | 0.8991 | 0.2052 | 0.0750 | | 0.0009 | 64.0 | 184320 | 0.9090 | 0.2093 | 0.0799 | | 0.0007 | 65.0 | 187200 | 0.8953 | 0.2011 | 0.0754 | | 0.0006 | 66.0 | 190080 | 0.9095 | 0.2059 | 0.0772 | | 0.0006 | 67.0 | 192960 | 0.9042 | 0.2004 | 0.0766 | | 0.0005 | 68.0 | 195840 | 0.9074 | 0.2063 | 0.0793 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3