--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: malayalam_combined_ results: [] --- [Visualize in Weights & Biases](https://wandb.ai/krishnan-aravind/huggingface/runs/e0c2wxc6) # malayalam_combined_ This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5153 - Wer: 0.5077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 0.8243 | 0.2031 | 500 | 0.8413 | 0.6658 | | 0.7336 | 0.4063 | 1000 | 0.7351 | 0.6251 | | 0.6824 | 0.6094 | 1500 | 0.6786 | 0.5956 | | 0.6489 | 0.8125 | 2000 | 0.6836 | 0.6075 | | 0.585 | 1.0156 | 2500 | 0.6295 | 0.5864 | | 0.5917 | 1.2188 | 3000 | 0.6166 | 0.5579 | | 0.56 | 1.4219 | 3500 | 0.6006 | 0.5646 | | 0.5736 | 1.6250 | 4000 | 0.6268 | 0.5643 | | 0.5821 | 1.8282 | 4500 | 0.6216 | 0.5786 | | 0.5505 | 2.0313 | 5000 | 0.5705 | 0.5379 | | 0.5065 | 2.2344 | 5500 | 0.5864 | 0.5460 | | 0.5004 | 2.4375 | 6000 | 0.5555 | 0.5259 | | 0.5327 | 2.6407 | 6500 | 0.5539 | 0.5255 | | 0.5148 | 2.8438 | 7000 | 0.5584 | 0.5457 | | 0.4751 | 3.0469 | 7500 | 0.5389 | 0.5208 | | 0.4779 | 3.2501 | 8000 | 0.5284 | 0.5102 | | 0.4874 | 3.4532 | 8500 | 0.5300 | 0.5084 | | 0.4955 | 3.6563 | 9000 | 0.5248 | 0.5125 | | 0.4961 | 3.8594 | 9500 | 0.5116 | 0.5061 | | 0.4449 | 4.0626 | 10000 | 0.5257 | 0.5122 | | 0.48 | 4.2657 | 10500 | 0.5254 | 0.5046 | | 0.4513 | 4.4688 | 11000 | 0.5364 | 0.5232 | | 0.4698 | 4.6719 | 11500 | 0.5293 | 0.5106 | | 0.4674 | 4.8751 | 12000 | 0.5153 | 0.5077 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 1.14.0a0+44dac51 - Datasets 2.16.1 - Tokenizers 0.19.1