--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: malayalam_combined_ results: [] --- [Visualize in Weights & Biases](https://wandb.ai/krishnan-aravind/huggingface/runs/m81qlwga) # malayalam_combined_ This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4712 - Wer: 0.4649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 0.8201 | 0.2031 | 500 | 0.8317 | 0.6757 | | 0.7455 | 0.4063 | 1000 | 0.7271 | 0.6119 | | 0.6928 | 0.6094 | 1500 | 0.6823 | 0.6083 | | 0.6497 | 0.8125 | 2000 | 0.6775 | 0.5955 | | 0.5968 | 1.0156 | 2500 | 0.6554 | 0.5837 | | 0.594 | 1.2188 | 3000 | 0.6127 | 0.5772 | | 0.558 | 1.4219 | 3500 | 0.6149 | 0.5574 | | 0.5906 | 1.6250 | 4000 | 0.5856 | 0.5485 | | 0.5846 | 1.8282 | 4500 | 0.5894 | 0.5413 | | 0.5504 | 2.0313 | 5000 | 0.5571 | 0.5310 | | 0.5059 | 2.2344 | 5500 | 0.5735 | 0.5542 | | 0.5019 | 2.4375 | 6000 | 0.5555 | 0.5278 | | 0.5274 | 2.6407 | 6500 | 0.5592 | 0.5111 | | 0.5113 | 2.8438 | 7000 | 0.5391 | 0.5318 | | 0.4624 | 3.0469 | 7500 | 0.5191 | 0.5189 | | 0.4696 | 3.2501 | 8000 | 0.5312 | 0.5072 | | 0.4866 | 3.4532 | 8500 | 0.5208 | 0.5167 | | 0.4817 | 3.6563 | 9000 | 0.5141 | 0.4966 | | 0.5053 | 3.8594 | 9500 | 0.5104 | 0.5010 | | 0.4541 | 4.0626 | 10000 | 0.5247 | 0.5130 | | 0.4761 | 4.2657 | 10500 | 0.5287 | 0.5157 | | 0.4385 | 4.4688 | 11000 | 0.5196 | 0.5018 | | 0.4698 | 4.6719 | 11500 | 0.5286 | 0.5120 | | 0.4631 | 4.8751 | 12000 | 0.5045 | 0.4957 | | 0.4269 | 5.0782 | 12500 | 0.5102 | 0.5018 | | 0.4253 | 5.2813 | 13000 | 0.5085 | 0.4949 | | 0.425 | 5.4845 | 13500 | 0.5209 | 0.4894 | | 0.4391 | 5.6876 | 14000 | 0.5037 | 0.4900 | | 0.4206 | 5.8907 | 14500 | 0.5265 | 0.4802 | | 0.4087 | 6.0938 | 15000 | 0.5044 | 0.4829 | | 0.4112 | 6.2970 | 15500 | 0.4962 | 0.4860 | | 0.3864 | 6.5001 | 16000 | 0.4823 | 0.4777 | | 0.4403 | 6.7032 | 16500 | 0.4898 | 0.4808 | | 0.3942 | 6.9064 | 17000 | 0.4821 | 0.4808 | | 0.386 | 7.1095 | 17500 | 0.4804 | 0.4789 | | 0.3752 | 7.3126 | 18000 | 0.4735 | 0.4662 | | 0.3863 | 7.5157 | 18500 | 0.4680 | 0.4662 | | 0.3767 | 7.7189 | 19000 | 0.4692 | 0.4610 | | 0.3942 | 7.9220 | 19500 | 0.4700 | 0.4721 | | 0.3502 | 8.1251 | 20000 | 0.4759 | 0.4742 | | 0.3504 | 8.3283 | 20500 | 0.4702 | 0.4653 | | 0.3594 | 8.5314 | 21000 | 0.4712 | 0.4649 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 1.14.0a0+44dac51 - Datasets 2.16.1 - Tokenizers 0.19.1