--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - FastJobs/Visual_Emotional_Analysis metrics: - accuracy model-index: - name: rgai_emotion_recognition results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.58125 --- # rgai_emotion_recognition This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset. It achieves the following results on the evaluation set: - Loss: 1.3077 - Accuracy: 0.5813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0698 | 1.0 | 25 | 2.0921 | 0.1125 | | 1.973 | 2.0 | 50 | 1.9930 | 0.1938 | | 1.8091 | 3.0 | 75 | 1.8374 | 0.3937 | | 1.5732 | 4.0 | 100 | 1.6804 | 0.475 | | 1.4087 | 5.0 | 125 | 1.5660 | 0.5125 | | 1.2653 | 6.0 | 150 | 1.4769 | 0.5375 | | 1.1443 | 7.0 | 175 | 1.4084 | 0.55 | | 0.9888 | 8.0 | 200 | 1.3633 | 0.5625 | | 0.9029 | 9.0 | 225 | 1.3305 | 0.55 | | 0.8372 | 10.0 | 250 | 1.3077 | 0.5813 | | 0.7569 | 11.0 | 275 | 1.2983 | 0.5625 | | 0.6886 | 12.0 | 300 | 1.2806 | 0.5687 | | 0.6216 | 13.0 | 325 | 1.2718 | 0.5687 | | 0.6385 | 14.0 | 350 | 1.2700 | 0.5563 | | 0.6029 | 15.0 | 375 | 1.2693 | 0.5625 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3