--- license: apache-2.0 datasets: - atasoglu/flickr8k-dataset language: - en metrics: - rouge pipeline_tag: image-to-text tags: - image - vision --- Vision Encoder Decoder (ViT + BERT) model that fine-tuned on [flickr8k-dataset](https://huggingface.co/datasets/atasoglu/flickr8k-dataset) for image-to-text task. Example: ```py from transformers import VisionEncoderDecoderModel, ViTImageProcessor, BertTokenizer import torch from PIL import Image # load models feature_extractor = ViTImageProcessor.from_pretrained("atasoglu/vit-bert-flickr8k") tokenizer = BertTokenizer.from_pretrained("atasoglu/vit-bert-flickr8k") model = VisionEncoderDecoderModel.from_pretrained("atasoglu/vit-bert-flickr8k") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # load image img = Image.open("example.jpg") # encode (extracting features) pixel_values = feature_extractor(images=[img], return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) # generate caption output_ids = model.generate(pixel_values) # decode preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) print(preds) ```