--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: scibert_claim_id_3e-05 results: [] --- # scibert_claim_id_3e-05 This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0071 - Accuracy: 0.9980 - F1: 0.9935 - Precision: 0.9957 - Recall: 0.9914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3163 | 1.0 | 666 | 0.2554 | 0.8884 | 0.5534 | 0.7437 | 0.4407 | | 0.2673 | 2.0 | 1332 | 0.1671 | 0.9361 | 0.7850 | 0.8309 | 0.7439 | | 0.2188 | 3.0 | 1998 | 0.0689 | 0.9769 | 0.9268 | 0.9232 | 0.9303 | | 0.0925 | 4.0 | 2664 | 0.0369 | 0.9879 | 0.9624 | 0.9428 | 0.9827 | | 0.0635 | 5.0 | 3330 | 0.0109 | 0.9971 | 0.9909 | 0.9928 | 0.9889 | | 0.038 | 6.0 | 3996 | 0.0071 | 0.9980 | 0.9935 | 0.9957 | 0.9914 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3