--- language: en datasets: - msp-podcast inference: true tags: - speech - audio - wav2vec2 - audio-classification - emotion-recognition license: cc-by-nc-sa-4.0 pipeline_tag: audio-classification --- # Model for Dimensional Speech Emotion Recognition based on Wav2vec 2.0 Please note that this model is for research purpose only. A commercial license for a model that has been trained on much more data can be acquired with [audEERING](https://www.audeering.com/products/devaice/). The model expects a raw audio signal as input, and outputs predictions for arousal, dominance and valence in a range of approximately 0...1. In addition, it provides the pooled states of the last transformer layer. The model was created by fine-tuning [Wav2Vec2-Large-Robust](https://huggingface.co/facebook/wav2vec2-large-robust) on [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) (v1.7). The model was pruned from 24 to 12 transformer layers before fine-tuning. An [ONNX](https://onnx.ai/) export of the model is available from [doi:10.5281/zenodo.6221127](https://zenodo.org/record/6221127). Further details are given in the associated [paper](https://arxiv.org/abs/2203.07378) and [tutorial](https://github.com/audeering/w2v2-how-to). # Usage ```python import numpy as np import torch import torch.nn as nn from transformers import Wav2Vec2Processor from transformers.models.wav2vec2.modeling_wav2vec2 import ( Wav2Vec2Model, Wav2Vec2PreTrainedModel, ) class RegressionHead(nn.Module): r"""Classification head.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.final_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x class EmotionModel(Wav2Vec2PreTrainedModel): r"""Speech emotion classifier.""" def __init__(self, config): super().__init__(config) self.config = config self.wav2vec2 = Wav2Vec2Model(config) self.classifier = RegressionHead(config) self.init_weights() def forward( self, input_values, ): outputs = self.wav2vec2(input_values) hidden_states = outputs[0] hidden_states = torch.mean(hidden_states, dim=1) logits = self.classifier(hidden_states) return hidden_states, logits # load model from hub device = 'cpu' model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim' processor = Wav2Vec2Processor.from_pretrained(model_name) model = EmotionModel.from_pretrained(model_name).to(device) # dummy signal sampling_rate = 16000 signal = np.zeros((1, sampling_rate), dtype=np.float32) def process_func( x: np.ndarray, sampling_rate: int, embeddings: bool = False, ) -> np.ndarray: r"""Predict emotions or extract embeddings from raw audio signal.""" # run through processor to normalize signal # always returns a batch, so we just get the first entry # then we put it on the device y = processor(x, sampling_rate=sampling_rate) y = y['input_values'][0] y = y.reshape(1, -1) y = torch.from_numpy(y).to(device) # run through model with torch.no_grad(): y = model(y)[0 if embeddings else 1] # convert to numpy y = y.detach().cpu().numpy() return y print(process_func(signal, sampling_rate)) # Arousal dominance valence # [[0.5460754 0.6062266 0.40431657]] print(process_func(signal, sampling_rate, embeddings=True)) # Pooled hidden states of last transformer layer # [[-0.00752167 0.0065819 -0.00746342 ... 0.00663632 0.00848748 # 0.00599211]] ```