--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: natural-language-inference results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - type: accuracy value: 0.8284313725490197 name: Accuracy - type: f1 value: 0.8821548821548822 name: F1 --- # natural-language-inference This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4120 - Accuracy: 0.8284 - F1: 0.8822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.4288 | 0.8039 | 0.8644 | | No log | 2.0 | 460 | 0.4120 | 0.8284 | 0.8822 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1