--- library_name: transformers license: mit base_model: avinasht/deberta-v3-xsmall-Label_B-768-epochs-3 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Dblefinetune-Noisy-deberta-v3-xsmall-Label_B-768-epochs-3-Label_B-768-epochs-1 results: [] --- # Dblefinetune-Noisy-deberta-v3-xsmall-Label_B-768-epochs-3-Label_B-768-epochs-1 This model is a fine-tuned version of [avinasht/deberta-v3-xsmall-Label_B-768-epochs-3](https://huggingface.co/avinasht/deberta-v3-xsmall-Label_B-768-epochs-3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1160 - Accuracy: 0.9755 - F1: 0.9755 - Precision: 0.9763 - Recall: 0.9755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0063 | 0.9995 | 1066 | 0.1160 | 0.9755 | 0.9755 | 0.9763 | 0.9755 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3