--- library_name: transformers license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: DynamicNoise-deberta-v3-small-Label_B-epochs-5 results: [] --- # DynamicNoise-deberta-v3-small-Label_B-epochs-5 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0889 - Accuracy: 0.9858 - F1: 0.9858 - Precision: 0.9859 - Recall: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1183 | 0.9995 | 1066 | 0.1529 | 0.9611 | 0.9610 | 0.9631 | 0.9611 | | 0.0489 | 1.9993 | 2132 | 0.0881 | 0.9796 | 0.9796 | 0.9797 | 0.9796 | | 0.0364 | 2.9991 | 3198 | 0.1118 | 0.9788 | 0.9789 | 0.9792 | 0.9788 | | 0.0032 | 3.9998 | 4265 | 0.0889 | 0.9858 | 0.9858 | 0.9859 | 0.9858 | | 0.0173 | 4.9986 | 5330 | 0.1346 | 0.9813 | 0.9813 | 0.9816 | 0.9813 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3