--- library_name: transformers license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: RawAndNoisy-deberta-v3-small-Label_B-768-epochs-3 results: [] --- # RawAndNoisy-deberta-v3-small-Label_B-768-epochs-3 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6315 - Accuracy: 0.9046 - F1: 0.9054 - Precision: 0.9261 - Recall: 0.9046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0444 | 0.9996 | 2132 | 0.8599 | 0.8423 | 0.8461 | 0.9025 | 0.8423 | | 0.0227 | 1.9996 | 4264 | 0.6255 | 0.8906 | 0.8902 | 0.9197 | 0.8906 | | 0.0 | 2.9996 | 6396 | 0.6315 | 0.9046 | 0.9054 | 0.9261 | 0.9046 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu118 - Tokenizers 0.21.0