--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-base-Label_B-768-epochs-5 results: [] --- # deberta-v3-base-Label_B-768-epochs-5 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0609 - Accuracy: 0.9876 - F1: 0.9876 - Precision: 0.9877 - Recall: 0.9876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1209 | 0.9995 | 1066 | 0.3304 | 0.9204 | 0.9188 | 0.9333 | 0.9204 | | 0.0639 | 2.0 | 2133 | 0.1217 | 0.9658 | 0.9658 | 0.9688 | 0.9658 | | 0.0208 | 2.9995 | 3199 | 0.0540 | 0.9856 | 0.9856 | 0.9858 | 0.9856 | | 0.002 | 4.0 | 4266 | 0.0609 | 0.9876 | 0.9876 | 0.9877 | 0.9876 | | 0.0003 | 4.9977 | 5330 | 0.0786 | 0.9847 | 0.9847 | 0.9850 | 0.9847 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0