--- license: mit base_model: microsoft/deberta-v3-xsmall tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-xsmall-Label_B-768-epochs-3 results: [] --- # deberta-v3-xsmall-Label_B-768-epochs-3 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1073 - Accuracy: 0.9741 - F1: 0.9741 - Precision: 0.9755 - Recall: 0.9741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.12 | 0.9994 | 1279 | 0.2452 | 0.9352 | 0.9350 | 0.9420 | 0.9352 | | 0.0496 | 1.9996 | 2559 | 0.1073 | 0.9741 | 0.9741 | 0.9755 | 0.9741 | | 0.0294 | 2.9982 | 3837 | 0.1162 | 0.9739 | 0.9739 | 0.9751 | 0.9739 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.5.0+cu124 - Datasets 2.18.0 - Tokenizers 0.19.1