--- license: apache-2.0 base_model: - sentence-transformers/all-MiniLM-L6-v2 --- **This model is a neuron compiled version of https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 *** It was compiled on version 2.19.1 of the Neuron SDK. You may need to run the compilation process again. See https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/sentence_transformers for more details For information on how to run on SageMaker: https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/sentence_transformers To run: ``` from optimum.neuron import NeuronModelForSentenceTransformers from transformers import AutoTokenizer model_id = "jburtoft/all-MiniLM-L6-v2-neuron" # Use the line below if you have to compile the model yourself #model_id = "all-MiniLM-L6-v2-neuron" model = NeuronModelForSentenceTransformers.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) # Run inference prompt = "I like to eat apples" encoded_input = tokenizer(prompt, return_tensors='pt') outputs = model(**encoded_input) token_embeddings = outputs.token_embeddings sentence_embedding = outputs.sentence_embedding print(f"token embeddings: {token_embeddings.shape}") # torch.Size([1, 7, 384]) print(f"sentence_embedding: {sentence_embedding.shape}") # torch.Size([1, 384]) ``` To compile: ``` optimum-cli export neuron -m sentence-transformers/all-MiniLM-L6-v2 --sequence_length 512 --batch_size 1 --task feature-extraction all-MiniLM-L6-v2-neuron ```