--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy base_model: bert-base-multilingual-cased model-index: - name: mbert-finetuned-azerbaijani-ner results: - task: type: token-classification name: Token Classification dataset: name: wikiann type: wikiann args: az metrics: - type: precision value: 0.8898541731306236 name: Precision - type: recall value: 0.915416533673795 name: Recall - type: f1 value: 0.9024543738200126 name: F1 - type: accuracy value: 0.966948310139165 name: Accuracy --- # mbert-finetuned-azerbaijani-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1385 - Precision: 0.8899 - Recall: 0.9154 - F1: 0.9025 - Accuracy: 0.9669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2928 | 1.0 | 625 | 0.1415 | 0.8584 | 0.8918 | 0.8748 | 0.9595 | | 0.1254 | 2.0 | 1250 | 0.1335 | 0.8875 | 0.9119 | 0.8996 | 0.9637 | | 0.077 | 3.0 | 1875 | 0.1385 | 0.8899 | 0.9154 | 0.9025 | 0.9669 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6