--- base_model: meta-llama/Meta-Llama-3.1-8B library_name: peft datasets: - barbaroo/Sprotin_parallel language: - en - fo metrics: - bleu - chrf - bertscore pipeline_tag: text-generation --- # Model Card: English–Faroese Translation Adapter ## Model Details **Model Description** - **Developed by:** Barbara Scalvini - **Model type:** Language model adapter for **English → Faroese** translation - **Language(s):** English, Faroese - **License:** This adapter inherits the license from the original Llama 3.1 8B model. - **Finetuned from model:** [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) - **Library used:** [PEFT 0.13.0](https://github.com/huggingface/peft) ### Model Sources - **Paper:** [COMING SOON] --- ## Uses ### Direct Use This adapter is intended to perform **English→Faroese** translation, leveraging a **parameter-efficient fine-tuning** (PEFT) approach. ### Downstream Use [optional] - Can be integrated into broader **multilingual** or **localization** workflows. ### Out-of-Scope Use - Any uses that rely on languages other than **English or Faroese** will likely yield suboptimal results. - Other tasks (e.g., summarization, classification) may be unsupported or require further fine-tuning. --- ## Bias, Risks, and Limitations - **Biases:** The model could reflect **biases** present in the training data, such as historical or societal biases in English or Faroese texts. - **Recommendation:** Users should **critically evaluate** outputs, especially in sensitive or high-stakes applications. --- ## How to Get Started with the Model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the trained model and tokenizer from the checkpoint checkpoint_dir = "barbaroo/llama3.1_translate_8B" # The directory where your trained model and tokenizer are saved model = AutoModelForCausalLM.from_pretrained(checkpoint_dir, device_map="auto", load_in_8bit = True) tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir) MAX_SEQ_LENGTH = 512 sentences = ["What's your name?"] # Define the prompt template (same as in training) alpaca_prompt = """ ### Instruction: {} ### Input: {} ### Response: {}""" # Inference loop for sentence in sentences: inputs = tokenizer( [ alpaca_prompt.format( "Translate this sentence from English to Faroese:", # Instruction sentence, # The input sentence to translate "", # Leave blank for generation ) ], return_tensors="pt", padding=True, truncation=True, # Make sure the input is not too long max_length=MAX_SEQ_LENGTH # Enforce the max length if necessary ).to("cuda") # Generate the translation outputs = model.generate( **inputs, max_new_tokens=512, # Limit the number of new tokens generated eos_token_id=tokenizer.eos_token_id, # Ensure EOS token is used pad_token_id=tokenizer.pad_token_id, # Ensure padding token is used temperature=0.1, # Sampling temperature for diversity top_p=1.0, # Sampling top-p for generation use_cache=True # Use cache for efficiency ) # Decode the generated tokens into text output_string = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] print(f"Input: {sentence}") print(f"Generated Translation: {output_string}") ``` ## Training Details ### Training Data We used the Sprotin parallel corpus for **English–Faroese** translation: [barbaroo/Sprotin_parallel](https://huggingface.co/datasets/barbaroo/Sprotin_parallel). ### Training Procedure #### Preprocessing [optional] - **Tokenization**: We used the tokenizer from the base model `meta-llama/Llama-3.1-8B`. - The Alpaca prompt format was used, with Instruction, Input and Response. #### Training Hyperparameters - **Epochs**: **3** total, with an **early stopping** criterion monitoring validation loss. - **Batch Size**: **2, with 4 Gradient accumulation steps** - **Learning Rate**: **2e-4** - **Optimizer**: **AdamW** with a linear learning-rate scheduler and warm-up. --- ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data - The model was evaluated on the **[FLORES-200]** benchmark, of ~1012 English–Faroese pairs. #### Metrics and Results - **BLEU**: **[0.175]** - **chrF**: **[49.5]** - **BERTScore f1**: **[0.948]** Human evaluation was also performed (see paper) ## Citation [] [COMING SOON] --- ## Framework versions - PEFT 0.13.0