--- language: - pl license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs base_model: openai/whisper-small model-index: - name: Whisper Small PL results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: pl split: test metrics: - type: wer value: 14.57 name: WER - type: wer_without_norm value: 33.57 name: WER unnormalized - type: cer value: 4.02 name: CER - type: mer value: 14.37 name: MER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli type: facebook/voxpopuli config: pl split: test metrics: - type: wer value: 15.73 name: WER - type: wer_without_norm value: 34.51 name: WER unnormalized - type: cer value: 7.73 name: CER - type: mer value: 15.28 name: MER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: pl_pl split: test metrics: - type: wer value: 16.79 name: WER - type: wer_without_norm value: 35.69 name: WER unnormalized - type: cer value: 4.99 name: CER - type: mer value: 16.55 name: MER --- # Whisper Small PL This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 and the FLEURS datasets. It achieves the following results on the evaluation set: - eval_loss: 0.3571 - eval_wer: 14.8004 - eval_runtime: 2233.4204 - eval_samples_per_second: 3.714 - eval_steps_per_second: 0.232 - epoch: 4.03 - step: 3000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2