--- library_name: transformers license: apache-2.0 base_model: barghavani/Cheese_xray tags: - generated_from_trainer metrics: - accuracy model-index: - name: Cheese_X_ray results: [] --- # Cheese_X_ray This model is a fine-tuned version of [barghavani/Cheese_xray](https://huggingface.co/barghavani/Cheese_xray) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1890 - Accuracy: 0.9381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.5579 | 0.9882 | 63 | 0.5524 | 0.7062 | | 0.4491 | 1.9922 | 127 | 0.4218 | 0.7062 | | 0.3646 | 2.9961 | 191 | 0.3928 | 0.7440 | | 0.3419 | 4.0 | 255 | 0.3827 | 0.8110 | | 0.3546 | 4.9882 | 318 | 0.3530 | 0.8608 | | 0.3745 | 5.9922 | 382 | 0.3298 | 0.8814 | | 0.3323 | 6.9961 | 446 | 0.3022 | 0.8952 | | 0.3125 | 8.0 | 510 | 0.2750 | 0.9089 | | 0.2663 | 8.9882 | 573 | 0.2648 | 0.8883 | | 0.2672 | 9.9922 | 637 | 0.2476 | 0.9038 | | 0.2492 | 10.9961 | 701 | 0.2354 | 0.9278 | | 0.2297 | 12.0 | 765 | 0.2272 | 0.9175 | | 0.1915 | 12.9882 | 828 | 0.2126 | 0.9107 | | 0.2071 | 13.9922 | 892 | 0.2006 | 0.9227 | | 0.2251 | 14.9961 | 956 | 0.1806 | 0.9244 | | 0.1979 | 16.0 | 1020 | 0.1900 | 0.9347 | | 0.1969 | 16.9882 | 1083 | 0.2081 | 0.9192 | | 0.2 | 17.9922 | 1147 | 0.2037 | 0.9175 | | 0.2082 | 18.9961 | 1211 | 0.2108 | 0.9175 | | 0.1838 | 19.7647 | 1260 | 0.1688 | 0.9330 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1