--- license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs - bayartsogt/ulaanbal-v0 metrics: - wer model-index: - name: whisper-small-mn-3-bayartsogt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test args: language: mn metrics: - name: Wer type: wer value: 30.36923749180686 --- # whisper-small-mn-3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3277 - Wer: 30.3692 - Cer: 10.9030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.3408 | 0.61 | 1000 | 0.4062 | 47.6841 | 17.3811 | | 0.2261 | 1.22 | 2000 | 0.3262 | 37.8086 | 13.6466 | | 0.2135 | 1.83 | 3000 | 0.2863 | 33.7175 | 12.2246 | | 0.1643 | 2.43 | 4000 | 0.2803 | 32.5978 | 11.4526 | | 0.1198 | 3.04 | 5000 | 0.2747 | 31.1121 | 11.0533 | | 0.1279 | 3.65 | 6000 | 0.2757 | 30.7243 | 10.8927 | | 0.0891 | 4.26 | 7000 | 0.2878 | 30.9209 | 11.0610 | | 0.0899 | 4.87 | 8000 | 0.2906 | 30.6642 | 11.0799 | | 0.0648 | 5.48 | 9000 | 0.3054 | 30.5986 | 10.9030 | | 0.0436 | 6.09 | 10000 | 0.3184 | 30.5222 | 10.9434 | | 0.0468 | 6.7 | 11000 | 0.3277 | 30.3692 | 10.9030 | | 0.0291 | 7.3 | 12000 | 0.3411 | 30.9810 | 11.1572 | | 0.0275 | 7.91 | 13000 | 0.3476 | 31.0684 | 11.1555 | | 0.0196 | 8.52 | 14000 | 0.3572 | 30.9154 | 11.1065 | | 0.0159 | 9.13 | 15000 | 0.3600 | 31.0356 | 11.2087 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2