--- library_name: peft license: llama3 base_model: elyza/Llama-3-ELYZA-JP-8B tags: - axolotl - generated_from_trainer model-index: - name: e30166d6-119a-43e4-9983-a8d7f7365ce3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: elyza/Llama-3-ELYZA-JP-8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 12f4176ec943798b_train_data.json ds_type: json format: custom path: /workspace/input_data/12f4176ec943798b_train_data.json type: field_input: ques_text field_instruction: ques_title field_output: ans_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 25 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: bbytxt/e30166d6-119a-43e4-9983-a8d7f7365ce3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GB max_steps: 50 micro_batch_size: 4 mlflow_experiment_name: /tmp/12f4176ec943798b_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 saves_per_epoch: null sequence_len: 2048 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e30166d6-119a-43e4-9983-a8d7f7365ce3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e30166d6-119a-43e4-9983-a8d7f7365ce3 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ```

# e30166d6-119a-43e4-9983-a8d7f7365ce3 This model is a fine-tuned version of [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1488 | 0.0004 | 1 | 3.3170 | | 2.7473 | 0.0102 | 25 | 2.8067 | | 2.4116 | 0.0205 | 50 | 2.5314 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1