---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: MAE-CT-M1N0-M12_v8_split1_v3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MAE-CT-M1N0-M12_v8_split1_v3

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3263
- Accuracy: 0.8696

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10500

### Training results

| Training Loss | Epoch    | Step  | Validation Loss | Accuracy |
|:-------------:|:--------:|:-----:|:---------------:|:--------:|
| 0.6778        | 0.0068   | 71    | 0.6620          | 0.6622   |
| 0.6974        | 1.0068   | 142   | 0.6518          | 0.6622   |
| 0.7123        | 2.0068   | 213   | 0.6538          | 0.6622   |
| 0.6797        | 3.0068   | 284   | 0.6663          | 0.6757   |
| 0.6391        | 4.0068   | 355   | 0.6381          | 0.6622   |
| 0.643         | 5.0068   | 426   | 0.6440          | 0.6622   |
| 0.6763        | 6.0068   | 497   | 0.6331          | 0.6622   |
| 0.6547        | 7.0068   | 568   | 0.6475          | 0.6622   |
| 0.6751        | 8.0068   | 639   | 0.6370          | 0.6622   |
| 0.6847        | 9.0068   | 710   | 0.6344          | 0.6622   |
| 0.7185        | 10.0068  | 781   | 0.6262          | 0.6622   |
| 0.6961        | 11.0068  | 852   | 0.6510          | 0.6622   |
| 0.6824        | 12.0068  | 923   | 0.6236          | 0.7162   |
| 0.6169        | 13.0068  | 994   | 0.6485          | 0.6622   |
| 0.6172        | 14.0068  | 1065  | 0.5578          | 0.6622   |
| 0.6671        | 15.0068  | 1136  | 0.5988          | 0.6486   |
| 0.6063        | 16.0068  | 1207  | 0.5371          | 0.7027   |
| 0.4294        | 17.0068  | 1278  | 0.9391          | 0.6622   |
| 0.5702        | 18.0068  | 1349  | 0.5392          | 0.6757   |
| 0.5217        | 19.0068  | 1420  | 0.5673          | 0.6892   |
| 0.4067        | 20.0068  | 1491  | 0.6192          | 0.6892   |
| 0.2278        | 21.0068  | 1562  | 0.8934          | 0.6622   |
| 0.7341        | 22.0068  | 1633  | 0.6416          | 0.7027   |
| 0.4694        | 23.0068  | 1704  | 0.4830          | 0.7297   |
| 0.4655        | 24.0068  | 1775  | 0.8866          | 0.6757   |
| 0.433         | 25.0068  | 1846  | 0.8913          | 0.7568   |
| 0.4986        | 26.0068  | 1917  | 1.0156          | 0.7027   |
| 0.4063        | 27.0068  | 1988  | 1.1915          | 0.6892   |
| 0.3722        | 28.0068  | 2059  | 1.3529          | 0.6892   |
| 0.2947        | 29.0068  | 2130  | 1.6801          | 0.6351   |
| 0.1906        | 30.0068  | 2201  | 0.9845          | 0.6892   |
| 0.0161        | 31.0068  | 2272  | 1.0789          | 0.7027   |
| 0.5682        | 32.0068  | 2343  | 1.2568          | 0.7162   |
| 0.1105        | 33.0068  | 2414  | 1.0929          | 0.7432   |
| 0.1818        | 34.0068  | 2485  | 1.1917          | 0.7027   |
| 0.5396        | 35.0068  | 2556  | 1.4710          | 0.6892   |
| 0.0868        | 36.0068  | 2627  | 1.5799          | 0.7297   |
| 0.2748        | 37.0068  | 2698  | 1.3387          | 0.6892   |
| 0.1488        | 38.0068  | 2769  | 1.4294          | 0.6892   |
| 0.3124        | 39.0068  | 2840  | 1.1473          | 0.7027   |
| 0.1499        | 40.0068  | 2911  | 1.8165          | 0.6757   |
| 0.3149        | 41.0068  | 2982  | 2.0903          | 0.6351   |
| 0.02          | 42.0068  | 3053  | 1.9185          | 0.7027   |
| 0.0852        | 43.0068  | 3124  | 1.4491          | 0.6892   |
| 0.0115        | 44.0068  | 3195  | 1.6180          | 0.7297   |
| 0.5243        | 45.0068  | 3266  | 1.8516          | 0.6892   |
| 0.0658        | 46.0068  | 3337  | 1.6331          | 0.7027   |
| 0.1269        | 47.0068  | 3408  | 2.0585          | 0.6892   |
| 0.2941        | 48.0068  | 3479  | 2.1071          | 0.6892   |
| 0.2149        | 49.0068  | 3550  | 1.4238          | 0.7162   |
| 0.0017        | 50.0068  | 3621  | 1.6924          | 0.7297   |
| 0.0004        | 51.0068  | 3692  | 1.7705          | 0.7162   |
| 0.6701        | 52.0068  | 3763  | 2.1679          | 0.6892   |
| 0.5874        | 53.0068  | 3834  | 1.8656          | 0.6351   |
| 0.0004        | 54.0068  | 3905  | 2.1886          | 0.6622   |
| 0.0183        | 55.0068  | 3976  | 2.0148          | 0.6486   |
| 0.0056        | 56.0068  | 4047  | 1.9963          | 0.6892   |
| 0.0014        | 57.0068  | 4118  | 1.9338          | 0.7162   |
| 0.2153        | 58.0068  | 4189  | 1.6661          | 0.7297   |
| 0.0003        | 59.0068  | 4260  | 1.9540          | 0.7162   |
| 0.3193        | 60.0068  | 4331  | 2.1075          | 0.7027   |
| 0.0004        | 61.0068  | 4402  | 1.5376          | 0.7432   |
| 0.0003        | 62.0068  | 4473  | 1.9647          | 0.7027   |
| 0.0006        | 63.0068  | 4544  | 1.8878          | 0.7297   |
| 0.0018        | 64.0068  | 4615  | 1.7761          | 0.7297   |
| 0.0002        | 65.0068  | 4686  | 1.7536          | 0.7027   |
| 0.0001        | 66.0068  | 4757  | 2.2684          | 0.6757   |
| 0.0002        | 67.0068  | 4828  | 1.7061          | 0.7162   |
| 0.0498        | 68.0068  | 4899  | 1.8082          | 0.7162   |
| 0.0007        | 69.0068  | 4970  | 1.7665          | 0.7297   |
| 0.0019        | 70.0068  | 5041  | 2.5360          | 0.6757   |
| 0.0854        | 71.0068  | 5112  | 2.0176          | 0.6892   |
| 0.153         | 72.0068  | 5183  | 2.6058          | 0.6351   |
| 0.0001        | 73.0068  | 5254  | 1.9414          | 0.7162   |
| 0.1577        | 74.0068  | 5325  | 2.1872          | 0.6892   |
| 0.0001        | 75.0068  | 5396  | 1.9070          | 0.7027   |
| 0.0001        | 76.0068  | 5467  | 2.1586          | 0.7027   |
| 0.0001        | 77.0068  | 5538  | 2.4877          | 0.6757   |
| 0.0001        | 78.0068  | 5609  | 2.1836          | 0.7297   |
| 0.0021        | 79.0068  | 5680  | 2.6697          | 0.6622   |
| 0.0001        | 80.0068  | 5751  | 1.8825          | 0.7432   |
| 0.0004        | 81.0068  | 5822  | 2.1590          | 0.6892   |
| 0.0003        | 82.0068  | 5893  | 1.8814          | 0.7568   |
| 0.0118        | 83.0068  | 5964  | 1.8479          | 0.7027   |
| 0.1773        | 84.0068  | 6035  | 1.6983          | 0.7297   |
| 0.0025        | 85.0068  | 6106  | 2.5502          | 0.6351   |
| 0.0001        | 86.0068  | 6177  | 2.2446          | 0.7027   |
| 0.0001        | 87.0068  | 6248  | 2.0950          | 0.7162   |
| 0.0001        | 88.0068  | 6319  | 2.2134          | 0.7162   |
| 0.0001        | 89.0068  | 6390  | 1.9576          | 0.7432   |
| 0.0001        | 90.0068  | 6461  | 2.0430          | 0.7027   |
| 0.0001        | 91.0068  | 6532  | 2.1319          | 0.7297   |
| 0.0034        | 92.0068  | 6603  | 2.4718          | 0.6892   |
| 0.0001        | 93.0068  | 6674  | 2.5268          | 0.6892   |
| 0.0001        | 94.0068  | 6745  | 2.4211          | 0.7027   |
| 0.0001        | 95.0068  | 6816  | 2.3971          | 0.6892   |
| 0.1517        | 96.0068  | 6887  | 2.2035          | 0.7297   |
| 0.0001        | 97.0068  | 6958  | 2.3758          | 0.6757   |
| 0.0001        | 98.0068  | 7029  | 2.2253          | 0.7162   |
| 0.0001        | 99.0068  | 7100  | 2.3226          | 0.7162   |
| 0.0001        | 100.0068 | 7171  | 2.2541          | 0.7297   |
| 0.0           | 101.0068 | 7242  | 2.6355          | 0.6486   |
| 0.0           | 102.0068 | 7313  | 2.8393          | 0.6622   |
| 0.0001        | 103.0068 | 7384  | 2.1938          | 0.6892   |
| 0.0001        | 104.0068 | 7455  | 2.2225          | 0.7027   |
| 0.1038        | 105.0068 | 7526  | 2.4167          | 0.7027   |
| 0.0001        | 106.0068 | 7597  | 2.2465          | 0.7162   |
| 0.0001        | 107.0068 | 7668  | 2.4677          | 0.7027   |
| 0.0333        | 108.0068 | 7739  | 2.4546          | 0.6622   |
| 0.0119        | 109.0068 | 7810  | 2.5811          | 0.6892   |
| 0.0001        | 110.0068 | 7881  | 2.2874          | 0.7162   |
| 0.0           | 111.0068 | 7952  | 2.1970          | 0.7297   |
| 0.0           | 112.0068 | 8023  | 2.2009          | 0.7432   |
| 0.0001        | 113.0068 | 8094  | 2.2554          | 0.7432   |
| 0.0           | 114.0068 | 8165  | 2.2652          | 0.7162   |
| 0.0           | 115.0068 | 8236  | 2.3248          | 0.7162   |
| 0.0001        | 116.0068 | 8307  | 2.5589          | 0.6892   |
| 0.0           | 117.0068 | 8378  | 2.2266          | 0.7568   |
| 0.0           | 118.0068 | 8449  | 2.2807          | 0.6892   |
| 0.0           | 119.0068 | 8520  | 2.2664          | 0.7432   |
| 0.0           | 120.0068 | 8591  | 2.1452          | 0.7162   |
| 0.0001        | 121.0068 | 8662  | 2.2492          | 0.7297   |
| 0.0           | 122.0068 | 8733  | 2.2303          | 0.7432   |
| 0.0           | 123.0068 | 8804  | 2.2320          | 0.7432   |
| 0.0           | 124.0068 | 8875  | 2.2220          | 0.7162   |
| 0.0           | 125.0068 | 8946  | 2.2343          | 0.7027   |
| 0.0           | 126.0068 | 9017  | 2.3466          | 0.7162   |
| 0.0           | 127.0068 | 9088  | 2.4283          | 0.7027   |
| 0.0           | 128.0068 | 9159  | 2.3447          | 0.7162   |
| 0.0           | 129.0068 | 9230  | 2.7482          | 0.6892   |
| 0.0           | 130.0068 | 9301  | 2.4948          | 0.7297   |
| 0.0           | 131.0068 | 9372  | 2.5561          | 0.7027   |
| 0.0           | 132.0068 | 9443  | 2.4132          | 0.7162   |
| 0.0           | 133.0068 | 9514  | 2.3921          | 0.7297   |
| 0.0           | 134.0068 | 9585  | 2.3964          | 0.7297   |
| 0.0           | 135.0068 | 9656  | 2.5452          | 0.7027   |
| 0.0           | 136.0068 | 9727  | 2.5288          | 0.7027   |
| 0.0           | 137.0068 | 9798  | 2.4979          | 0.7162   |
| 0.0           | 138.0068 | 9869  | 2.4991          | 0.7162   |
| 0.0001        | 139.0068 | 9940  | 2.4993          | 0.7162   |
| 0.0           | 140.0068 | 10011 | 2.5002          | 0.7027   |
| 0.0           | 141.0068 | 10082 | 2.5028          | 0.7027   |
| 0.0           | 142.0068 | 10153 | 2.5063          | 0.7027   |
| 0.0           | 143.0068 | 10224 | 2.5081          | 0.7027   |
| 0.0           | 144.0068 | 10295 | 2.5087          | 0.7027   |
| 0.0           | 145.0068 | 10366 | 2.5091          | 0.7027   |
| 0.0           | 146.0068 | 10437 | 2.5093          | 0.7027   |
| 0.0           | 147.006  | 10500 | 2.5051          | 0.7027   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0