--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # transformers_issues_topics This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("belenedgar/transformers_issues_topics") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 5 * Number of training documents: 156
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | extremism - extremist - terrorism - radical - radicalization | 21 | -1_extremism_extremist_terrorism_radical | | 0 | phishing - theft - scammers - security - fraud | 17 | 0_phishing_theft_scammers_security | | 1 | addiction - violence - cyber - content - presence | 54 | 1_addiction_violence_cyber_content | | 2 | cyberbullying - bullying - cyber - cyberstalking - harassment | 39 | 2_cyberbullying_bullying_cyber_cyberstalking | | 3 | profanity - derogatory - vulgarity - hate - offensive | 25 | 3_profanity_derogatory_vulgarity_hate |
## Training hyperparameters * calculate_probabilities: False * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.24.4 * HDBSCAN: 0.8.33 * UMAP: 0.5.3 * Pandas: 2.0.3 * Scikit-Learn: 1.3.0 * Sentence-transformers: 2.2.2 * Transformers: 4.31.0 * Numba: 0.57.1 * Plotly: 5.15.0 * Python: 3.10.10