--- library_name: peft license: apache-2.0 base_model: AdaptLLM/biomed-Qwen2-VL-2B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: qwenvl-2B-cadica-direction-scale4 results: [] --- # qwenvl-2B-cadica-direction-scale4 This model is a fine-tuned version of [AdaptLLM/biomed-Qwen2-VL-2B-Instruct](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) on the CADICA血管分支方向題scale4(TRAIN) dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Num Input Tokens Seen: 11990784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 1200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 0.3441 | 0.0258 | 50 | 0.3383 | 499200 | | 0.2274 | 0.0515 | 100 | 0.1866 | 998400 | | 0.0667 | 0.0773 | 150 | 0.0967 | 1497600 | | 0.0459 | 0.1030 | 200 | 0.0996 | 1996800 | | 0.0805 | 0.1288 | 250 | 0.0559 | 2496000 | | 0.0381 | 0.1545 | 300 | 0.0309 | 2995200 | | 0.1761 | 0.1803 | 350 | 0.0439 | 3494400 | | 0.0146 | 0.2060 | 400 | 0.0244 | 3993600 | | 0.0157 | 0.2318 | 450 | 0.0067 | 4492800 | | 0.0122 | 0.2575 | 500 | 0.0080 | 4992000 | | 0.0339 | 0.2833 | 550 | 0.0034 | 5491200 | | 0.0217 | 0.3090 | 600 | 0.0133 | 5990400 | | 0.0327 | 0.3348 | 650 | 0.0210 | 6489600 | | 0.0267 | 0.3605 | 700 | 0.0053 | 6988800 | | 0.014 | 0.3863 | 750 | 0.0053 | 7488000 | | 0.0065 | 0.4121 | 800 | 0.0068 | 7987200 | | 0.0306 | 0.4378 | 850 | 0.0072 | 8486400 | | 0.0063 | 0.4636 | 900 | 0.0107 | 8985600 | | 0.0415 | 0.4893 | 950 | 0.0072 | 9484800 | | 0.0547 | 0.5151 | 1000 | 0.0007 | 9984000 | | 0.0007 | 0.5408 | 1050 | 0.0568 | 10483200 | | 0.0056 | 0.5666 | 1100 | 0.0004 | 10982400 | | 0.0127 | 0.5923 | 1150 | 0.0000 | 11481600 | | 0.0038 | 0.6181 | 1200 | 0.0022 | 11980800 | ### Framework versions - PEFT 0.12.0 - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3