--- language: - en - ko library_name: transformers tags: - pytorch - Yi-Ko - 01-ai - Yi extra_gated_heading: Access beomi/Yi-Ko-6B on Hugging Face extra_gated_button_content: Submit extra_gated_fields: I agree to share my name, email address and username: checkbox ? I confirm that I understand this project is for research purposes only, and confirm that I agree to follow the LICENSE of this model : checkbox pipeline_tag: text-generation inference: false model-index: - name: Yi-Ko-6B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 48.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 74.48 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 55.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 37.09 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 72.93 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 12.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B name: Open LLM Leaderboard license: apache-2.0 --- > Update @ 2024.01.29 New Model [beomi/Yi-Ko-DUS-9B](https://huggingface.co/beomi/Yi-Ko-DUS-9B) Released! 🎉 > Update @ 2023.12.03 Yi-Ko(KoEN)-6B Achieved #1🥇 Pretrained Models at [Open Korean LLM Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)! 🎉 > Update @ 2023.12.01 Alpha Release of Yi-Ko(KoEN)-6B model 🎉 # **beomi/Yi-Ko-6B** Yi-Ko series models serve as advanced iterations of 01-ai/Yi models, benefiting from an expanded vocabulary and the inclusion of Korean/English corpus in its further pretraining. Just like its predecessor, Yi-Ko series models operate within the broad range of generative text models that stretch from 6 billion to 34 billion parameters. This repository focuses on the **6B** pretrained version, which is tailored to fit the Hugging Face Transformers format. For access to the other models, feel free to consult the index provided below. ## Model Details **Model Developers** Junbum Lee (Beomi) **Variations** Yi-Ko series will come in a range of parameter sizes — 6B and 34B variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Yi-Ko series models are an auto-regressive language model that uses an optimized transformer architecture based on Llama-2*. *Yi model architecture is based on Llama2, so it can be loaded via `LlamaForCausalLM` class on HF. |Model Name|Training Data|Params|Context Length|GQA|Trained Tokens|LR|Batch Size(per step)| |---|---|---|---|---|---|---|---| |Yi-Ko-6B|*A mix of Korean + English online data*|6B|4k|O|>60B|5e-5|2048| **Vocab Expansion** | Model Name | Vocabulary Size | Description | | --- | --- | --- | | Original Yi-Series | 64000 | Sentencepiece BPE | | **Expanded Yi-Ko Series** | 78464 | Sentencepiece BPE. Added Korean vocab and merges | **Tokenizing "안녕하세요, 오늘은 날씨가 좋네요.ㅎㅎ"** | Model | # of tokens | Tokens | | --- | --- | --- | | Original Yi-Series | 47 | `['<0xEC>', '<0x95>', '<0x88>', '<0xEB>', '<0x85>', '<0x95>', '하', '<0xEC>', '<0x84>', '<0xB8>', '<0xEC>', '<0x9A>', '<0x94>', ',', '▁', '<0xEC>', '<0x98>', '<0xA4>', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '<0xEB>', '<0x82>', '<0xA0>', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', '<0xEC>', '<0x9A>', '<0x94>', '.', '<0xE3>', '<0x85>', '<0x8E>', '<0xE3>', '<0x85>', '<0x8E>']` | | **Expanded Yi-Ko Series** | 10 | `['▁안녕', '하세요', ',', '▁오늘은', '▁날', '씨가', '▁좋네요', '.', 'ㅎ', 'ㅎ']` | |*Equal Korean vocab with Llama-2-Ko Series|| **Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models"** | Model | # of tokens | Tokens | | --- | --- | --- | | Original Yi-Series | 21 | `['The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` | | **Expanded Yi-Ko Series** | 21 | `['▁The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` | |*Equal Korean vocab with Llama-2-Ko Series| | *Since **Expanded Yi-Ko Series** prepends `_` at the beginning of the text(to ensure same tokenization for Korean sentences), it shows negilible difference for the first token on English tokenization. | # **Model Benchmark** ## LM Eval Harness - Korean (polyglot branch) | beomi/Yi-Ko-6B | 0 | 5 | 10 | 50 | |:---------------------------------|---------:|---------:|---------:|---------:| | kobest_boolq (macro_f1) | 0.705806 | 0.79905 | 0.814299 | 0.81704 | | kobest_copa (macro_f1) | 0.775604 | 0.808899 | 0.816866 | 0.842943 | | kobest_hellaswag (macro_f1) | 0.500876 | 0.498673 | 0.493507 | 0.492183 | | kobest_sentineg (macro_f1) | 0.404371 | 0.967254 | 0.982368 | 0.974811 | | kohatespeech (macro_f1) | 0.353428 | 0.351804 | 0.402423 | 0.503764 | | kohatespeech_apeach (macro_f1) | 0.337667 | 0.498679 | 0.471962 | 0.608401 | | kohatespeech_gen_bias (macro_f1) | 0.124535 | 0.484745 | 0.474475 | 0.461714 | | korunsmile (f1) | 0.382804 | 0.349344 | 0.391383 | 0.432875 | | nsmc (acc) | 0.55064 | 0.8801 | 0.89866 | 0.9071 | | pawsx_ko (acc) | 0.5145 | 0.54 | 0.538 | 0.5165 | ## LICENSE Apache 2.0 (for research) > For commercial purpose, > mailto: jun@beomi.net to acquire Yi-Ko sereis commercial license. ## Citation Please use this bibtex below: ``` @misc {lee_junbum_2024, author = { {Lee Junbum} }, title = { Yi-Ko-6B (Revision 205083a) }, year = 2024, url = { https://huggingface.co/beomi/Yi-Ko-6B }, doi = { 10.57967/hf/1708 }, publisher = { Hugging Face } } ``` ## Acknowledgement The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_beomi__Yi-Ko-6B) | Metric |Value| |---------------------------------|----:| |Avg. |50.27| |AI2 Reasoning Challenge (25-Shot)|48.89| |HellaSwag (10-Shot) |74.48| |MMLU (5-Shot) |55.72| |TruthfulQA (0-shot) |37.09| |Winogrande (5-shot) |72.93| |GSM8k (5-shot) |12.51|