# -*- coding: utf-8 -*- """FINALberturk_ensemble.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1yAhhmVl42CAD5BCvUCtjMO7utTU2cGqE """ !pip install transformers # Commented out IPython magic to ensure Python compatibility. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) #For EDA import matplotlib.pyplot as plt import seaborn as sns # Packages for general use throughout the notebook. import random import warnings import time # %matplotlib inline from sklearn.model_selection import train_test_split # to see columns properly pd.set_option('display.max_colwidth', None) # for build our model import tensorflow as tf from tensorflow.keras.layers import Add, GlobalAvgPool1D, MaxPool1D, Activation, BatchNormalization, Embedding, LSTM, Dense, Bidirectional, Input, SpatialDropout1D, Dropout, Conv1D from tensorflow.keras import Model from transformers import BertTokenizer, TFBertModel from tensorflow.keras.activations import relu from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score, f1_score # Input data files are available in the read-only "../input/" directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import torch import numpy as np from transformers import BertTokenizer, BertModel import time from datetime import datetime import matplotlib.pyplot as plt import torch import torch.nn as nn from torch.optim import Adam from tqdm import tqdm from torch.optim.lr_scheduler import ReduceLROnPlateau !pip install session_info import session_info session_info.show() dataset = pd.read_csv(r"train_with_preprocess.csv") dataset df=dataset[[ "first_p_sec_sw","target"]] df.columns=["text","target"] df tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-turkish-128k-uncased") labels = {'INSULT':0, 'OTHER':1, 'PROFANITY':2, 'RACIST':3, 'SEXIST':4 } class Dataset(torch.utils.data.Dataset): def __init__(self, df): self.labels = [labels[label] for label in df['target']] self.texts = [tokenizer(text, padding='max_length', max_length = 512, truncation=True, return_tensors="pt") for text in df['text']] def classes(self): return self.labels def __len__(self): return len(self.labels) def get_batch_labels(self, idx): # Fetch a batch of labels return np.array(self.labels[idx]) def get_batch_texts(self, idx): # Fetch a batch of inputs return self.texts[idx] def __getitem__(self, idx): batch_texts = self.get_batch_texts(idx) batch_y = self.get_batch_labels(idx) return batch_texts, batch_y np.random.seed(112) df_train, df_val, df_test = np.split(df.sample(frac=1, random_state=42), [int(.8*len(df)), int(.9*len(df))]) print(len(df_train),len(df_val), len(df_test)) class BertClassifierConv1D(nn.Module): def __init__(self, dropout=0.5, num_classes=5): super(BertClassifierConv1D, self).__init__() self.bert = BertModel.from_pretrained('dbmdz/bert-base-turkish-128k-uncased', return_dict=True) self.conv1d = nn.Conv1d(in_channels=self.bert.config.hidden_size, out_channels=128, kernel_size=5) self.bilstm = nn.LSTM(input_size=128, hidden_size=64, num_layers=1, bidirectional=True, batch_first=True) self.dropout = nn.Dropout(dropout) self.linear = nn.Linear(128, num_classes) def forward(self, input_id, mask): output = self.bert(input_ids=input_id, attention_mask=mask).last_hidden_state output = output.permute(0, 2, 1) # swap dimensions to prepare for Conv1d layer output = self.conv1d(output) output, _ = self.bilstm(output.transpose(1, 2)) output = self.dropout(output) output = self.linear(output.mean(dim=1)) return output def plot_graphs(history, string): plt.plot(history[string]) plt.plot(history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string, 'val_'+string]) plt.show() def train(model, train_data, val_data, learning_rate, epochs,patience=3): train, val = Dataset(train_data), Dataset(val_data) train_dataloader = torch.utils.data.DataLoader(train, batch_size=32, shuffle=True) val_dataloader = torch.utils.data.DataLoader(val, batch_size=32) use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") criterion = nn.CrossEntropyLoss() optimizer = Adam(model.parameters(), lr= learning_rate) if use_cuda: model = model.cuda() criterion = criterion.cuda() history = {'loss': [], 'accuracy': [], 'val_loss': [], 'val_accuracy': []} best_val_loss = float('inf') counter = 0 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=5, factor=0.1, verbose=True, cooldown=0) for epoch_num in range(epochs): total_acc_train = 0 total_loss_train = 0 for train_input, train_label in tqdm(train_dataloader): train_label = train_label.to(device) mask = train_input['attention_mask'].to(device) input_id = train_input['input_ids'].squeeze(1).to(device) output = model(input_id, mask) batch_loss = criterion(output, train_label.long()) total_loss_train += batch_loss.item() acc = (output.argmax(dim=1) == train_label).sum().item() total_acc_train += acc model.zero_grad() batch_loss.backward() optimizer.step() total_acc_val = 0 total_loss_val = 0 with torch.no_grad(): for val_input, val_label in val_dataloader: val_label = val_label.to(device) mask = val_input['attention_mask'].to(device) input_id = val_input['input_ids'].squeeze(1).to(device) output = model(input_id, mask) batch_loss = criterion(output, val_label.long()) total_loss_val += batch_loss.item() acc = (output.argmax(dim=1) == val_label).sum().item() total_acc_val += acc train_loss = total_loss_train / len(train_data) train_acc = total_acc_train / len(train_data) val_loss = total_loss_val / len(val_data) val_acc = total_acc_val / len(val_data) history['loss'].append(train_loss) history['accuracy'].append(train_acc) history['val_loss'].append(val_loss) history['val_accuracy'].append(val_acc) print(f'Epochs: {epoch_num + 1} | Train Loss: {train_loss:.3f} | Train Accuracy: {train_acc:.3f} | Val Loss: {val_loss:.3f} | Val Accuracy: {val_acc:.3f}') if val_loss < best_val_loss: best_val_loss = val_loss counter = 0 else: counter += 1 if counter >= patience: print(f'Early stopping at epoch {epoch_num+1}') break scheduler.step(val_loss) plot_graphs(history, "accuracy") plot_graphs(history, "loss") EPOCHS = 15 model = BertClassifierConv1D() LR = 1e-6 train(model, df_train, df_val, LR, EPOCHS) !pip install datetime now = datetime.now() seed = int(now.strftime("%Y%m%d%H%M%S")) # daily print(seed) random.seed(seed) random_time=random.randint(0, 350) model_path= 'model_weights'+str(random_time)+".pth" torch.save(model.state_dict(), model_path) print(model_path) def evaluate(model, test_data): test = Dataset(test_data) test_dataloader = torch.utils.data.DataLoader(test, batch_size=32) use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") if use_cuda: model = model.cuda() total_acc_test = 0 output_indices = [] test_labels=[] with torch.no_grad(): for test_input, test_label in test_dataloader: test_label = test_label.to(device) mask = test_input['attention_mask'].to(device) input_id = test_input['input_ids'].squeeze(1).to(device) output = model(input_id, mask) acc = (output.argmax(dim=1) == test_label).sum().item() total_acc_test += acc batch_indices = output.argmax(dim=1).tolist() output_indices.extend(batch_indices) test_labels.extend(test_label) print(f'Test Accuracy: {total_acc_test / len(test_data): .3f}') return output_indices, test_labels y_pred,y_test=evaluate(model, df_test) y_pred_tensor = torch.tensor(y_pred) y_test_tensor = torch.tensor(y_test) print(classification_report(np.array(y_pred_tensor.cpu()), np.array(y_test_tensor.cpu()), output_dict=True)) from sklearn.metrics import f1_score f1_score(np.array(y_test_tensor.cpu()),np.array(y_pred_tensor.cpu()), average='macro') def conf_matrix(y_test,y_pred): cm = confusion_matrix(y_test,y_pred, normalize="true") sns.heatmap(cm, annot=True, cmap="Blues",xticklabels=["INSULT","OTHER","PROFANITY","RACIST","SECIST"],yticklabels=["INSULT","OTHER","PROFANITY","RACIST","SECIST"] ) plt.xlabel('Tahmin Edilen Sınıf') plt.ylabel('Gerçek Sınıf') plt.show() conf_matrix(np.array(y_pred_tensor.cpu()), np.array(y_test_tensor.cpu()))