--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: bfuzzy1/acheron-m widget: - messages: - role: user content: What is 2 + 2 - 3? license: other datasets: - ai2-adapt-dev/gsm8k_math_ifeval_ground_truth_mixed --- # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_path = "bfuzzy1/acheron-m1a-llama" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto', trust_remote_code=True ) messages = [ {"role": "user", "content": "What's 2 + 2 -3?"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate( input_ids.to('mps' if torch.backends.mps.is_available() else 'cpu'), max_new_tokens=100 ) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) print(response) ```