--- pipeline_tag: text-generation inference: true widget: - text: 'def print_hello_world():' example_title: Hello world group: Python license: bigcode-openrail-m datasets: - bigcode/the-stack-dedup metrics: - code_eval library_name: transformers tags: - code model-index: - name: StarCoder results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval (Prompted) metrics: - name: pass@1 type: pass@1 value: 0.408 verified: false - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 0.336 verified: false - task: type: text-generation dataset: type: mbpp name: MBPP metrics: - name: pass@1 type: pass@1 value: 0.527 verified: false - task: type: text-generation dataset: type: ds1000 name: DS-1000 (Overall Completion) metrics: - name: pass@1 type: pass@1 value: 0.26 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C++) metrics: - name: pass@1 type: pass@1 value: 0.3155 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C#) metrics: - name: pass@1 type: pass@1 value: 0.2101 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (D) metrics: - name: pass@1 type: pass@1 value: 0.1357 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Go) metrics: - name: pass@1 type: pass@1 value: 0.1761 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 0.3022 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Julia) metrics: - name: pass@1 type: pass@1 value: 0.2302 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 0.3079 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Lua) metrics: - name: pass@1 type: pass@1 value: 0.2389 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (PHP) metrics: - name: pass@1 type: pass@1 value: 0.2608 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Perl) metrics: - name: pass@1 type: pass@1 value: 0.1734 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Python) metrics: - name: pass@1 type: pass@1 value: 0.3357 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (R) metrics: - name: pass@1 type: pass@1 value: 0.155 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Ruby) metrics: - name: pass@1 type: pass@1 value: 0.0124 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Racket) metrics: - name: pass@1 type: pass@1 value: 0.0007 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Rust) metrics: - name: pass@1 type: pass@1 value: 0.2184 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Scala) metrics: - name: pass@1 type: pass@1 value: 0.2761 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Bash) metrics: - name: pass@1 type: pass@1 value: 0.1046 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Swift) metrics: - name: pass@1 type: pass@1 value: 0.2274 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (TypeScript) metrics: - name: pass@1 type: pass@1 value: 0.3229 verified: false extra_gated_prompt: >- ## Model License Agreement Please read the BigCode [OpenRAIL-M license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) agreement before accepting it. extra_gated_fields: I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox --- # StarCoder ![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/StarCoderBanner.png) Play with the model on the [StarCoder Playground](https://huggingface.co/spaces/bigcode/bigcode-playground). ## Table of Contents 1. [Model Summary](##model-summary) 2. [Use](##use) 3. [Limitations](##limitations) 4. [Training](##training) 5. [License](##license) 6. [Citation](##citation) ## Model Summary The StarCoder models are 15.5B parameter models trained on 80+ programming languages from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack), with opt-out requests excluded. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), [a context window of 8192 tokens](https://arxiv.org/abs/2205.14135), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1 trillion tokens. - **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM) - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org) - **Paper:** [šŸ’«StarCoder: May the source be with you!](https://arxiv.org/abs/2305.06161) - **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org) - **Languages:** 80+ Programming languages ## Use ### Intended use The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, by using the [Tech Assistant prompt](https://huggingface.co/datasets/bigcode/ta-prompt) you can turn it into a capable technical assistant. **Feel free to share your generations in the Community tab!** ### Generation ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigcode/starcoder" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Fill-in-the-middle Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output: ```python input_text = "def print_hello_world():\n \n print('Hello world!')" inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Attribution & Other Requirements The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code. # Limitations The model has been trained on source code from 80+ programming languages. The predominant natural language in source code is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. At this time there is no mechanism to detect content previously generated by the model. See [the paper](https://arxiv.org/pdf/2305.06161.pdf) for an in-depth discussion of the model limitations. # Training ## Model - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective - **Pretraining steps:** 250k - **Pretraining tokens:** 1 trillion - **Precision:** bfloat16 ## Hardware - **GPUs:** 512 Tesla A100 - **Training time:** 24 days (320,256 GPU hours pretraining + 11,208 GPU hours Python fine-tuning) - **Training FLOPS:** 8.46E+22 ## Software - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # License The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement). **Email contact@bigcode-project.org with questions related to the license agreement and for appeals relating to use restrictions.** # Citation ``` @article{li2023starcoder, title={StarCoder: may the source be with you!}, author={Raymond Li and Loubna Ben Allal and Yangtian Zi and Niklas Muennighoff and Denis Kocetkov and Chenghao Mou and Marc Marone and Christopher Akiki and Jia Li and Jenny Chim and Qian Liu and Evgenii Zheltonozhskii and Terry Yue Zhuo and Thomas Wang and Olivier Dehaene and Mishig Davaadorj and Joel Lamy-Poirier and JoĆ£o Monteiro and Oleh Shliazhko and Nicolas Gontier and Nicholas Meade and Armel Zebaze and Ming-Ho Yee and Logesh Kumar Umapathi and Jian Zhu and Benjamin Lipkin and Muhtasham Oblokulov and Zhiruo Wang and Rudra Murthy and Jason Stillerman and Siva Sankalp Patel and Dmitry Abulkhanov and Marco Zocca and Manan Dey and Zhihan Zhang and Nour Fahmy and Urvashi Bhattacharyya and Wenhao Yu and Swayam Singh and Sasha Luccioni and Paulo Villegas and Maxim Kunakov and Fedor Zhdanov and Manuel Romero and Tony Lee and Nadav Timor and Jennifer Ding and Claire Schlesinger and Hailey Schoelkopf and Jan Ebert and Tri Dao and Mayank Mishra and Alex Gu and Jennifer Robinson and Carolyn Jane Anderson and Brendan Dolan-Gavitt and Danish Contractor and Siva Reddy and Daniel Fried and Dzmitry Bahdanau and Yacine Jernite and Carlos MuƱoz Ferrandis and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries}, year={2023}, eprint={2305.06161}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```