--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - bika5/pfedrx metrics: - wer model-index: - name: Whisper Small en - bika results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: pfedrx type: bika5/pfedrx args: 'config: en, split: test' metrics: - name: Wer type: wer value: 13.88888888888889 --- # Whisper Small en - bika This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the pfedrx dataset. It achieves the following results on the evaluation set: - Loss: 0.8296 - Wer: 13.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0001 | 1000.0 | 1000 | 0.7543 | 13.8889 | | 0.0 | 2000.0 | 2000 | 0.8129 | 13.8889 | | 0.0 | 3000.0 | 3000 | 0.8296 | 13.8889 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1