--- language: - en tags: - feature-extraction - pubmed - sentence-similarity datasets: - biu-nlp/abstract-sim-pubmed --- A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Trained on Pubmed sentences. Use ```load_finetuned_model``` to load the query and sentence encoder, and ```encode_batch()``` to encode a sentence with the model. ```python from transformers import AutoTokenizer, AutoModel import torch def load_finetuned_model(): sentence_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-sentence-pubmed", revision="71f4539120e29024adc618173a1ed5fd230ac249") query_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-query-pubmed", revision="8d34676d80a39bcbc5a1d2eec13e6f8078496215") tokenizer = AutoTokenizer.from_pretrained("biu-nlp/abstract-sim-sentence-pubmed") return tokenizer, query_encoder, sentence_encoder def encode_batch(model, tokenizer, sentences, device): input_ids = tokenizer(sentences, padding=True, max_length=128, truncation=True, return_tensors="pt", add_special_tokens=True).to(device) features = model(**input_ids)[0] features = torch.sum(features[:,1:,:] * input_ids["attention_mask"][:,1:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,1:], dim=1, keepdims=True), min=1e-9) return features ```