--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.64 +/- 17.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) Configurations/Parameters ```python model = PPO( policy="MlpPolicy", env=env, n_steps=2048, batch_size=64, n_epochs=6, gamma=0.999, gae_lambda=0.98, ent_coef=0.01, verbose=1, ) total_timesteps=750000 ... ```