--- license: apache-2.0 tags: - generated_from_trainer base_model: distilbert-base-uncased model-index: - name: uzb-senAnalys results: [] --- # uzbek-sentiment-analysis It achieves the following results on the evaluation set: - eval_loss: 0.6374 - eval_accuracy: {'accuracy': 0.7862348178137651} - eval_f1score: {'f1': 0.7880364308572618} - eval_runtime: 7.593 - eval_samples_per_second: 162.65 - eval_steps_per_second: 20.414 - step: 0 ## Model description **uzbek-sentiment-analysis** modelidan foydalanish. ``` from transformers import pipeline pipe = pipeline('sentimennt-analysis', model='ai-nightcoder/uzbek-sentiment-analysis') text = "bu ovqatni men juda ham yaxshi ko'raman." pipe(text)[0]['label'] ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 864 - num_epochs: 7 ### Framework versions - Transformers 4.40.1 - Pytorch 2.4.0.dev20240416+cu121 - Datasets 1.18.3 - Tokenizers 0.19.1