--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer datasets: - Dev372/Medical_STT_Dataset_1.1 metrics: - wer model-index: - name: Whisper Medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical STT type: Dev372/Medical_STT_Dataset_1.1 metrics: - name: Wer type: wer value: 3.2511210762331837 --- # Whisper Medium This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the Medical STT dataset. It achieves the following results on the evaluation set: - Loss: 0.0977 - Wer Ortho: 5.4215 - Wer: 3.2511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 0.0481 | 1.2563 | 500 | 0.0977 | 5.4215 | 3.2511 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0