--- datasets: - bs-la/xP3ru license: bigscience-bloom-rail-1.0 model-index: - name: bloomz-7b1 results: - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (ru) config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 54.29 - task: type: Natural language inference dataset: type: xnli name: XNLI (ru) config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 34.62 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ru) config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 55.99 --- # Model Summary [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) finetuned on Russian multitask data. Hence the same as [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1), but with **only** Russian finetuning data. 500m stands for 500 million finetuning tokens. # Citation ``` @article{yong2022bloom+, title={BLOOM+ 1: Adding Language Support to BLOOM for Zero-Shot Prompting}, author={Yong, Zheng-Xin and Schoelkopf, Hailey and Muennighoff, Niklas and Aji, Alham Fikri and Adelani, David Ifeoluwa and Almubarak, Khalid and Bari, M Saiful and Sutawika, Lintang and Kasai, Jungo and Baruwa, Ahmed and others}, journal={arXiv preprint arXiv:2212.09535}, year={2022} } ``` ```bibtex @misc{muennighoff2022crosslingual, title={Crosslingual Generalization through Multitask Finetuning}, author={Niklas Muennighoff and Thomas Wang and Lintang Sutawika and Adam Roberts and Stella Biderman and Teven Le Scao and M Saiful Bari and Sheng Shen and Zheng-Xin Yong and Hailey Schoelkopf and Xiangru Tang and Dragomir Radev and Alham Fikri Aji and Khalid Almubarak and Samuel Albanie and Zaid Alyafeai and Albert Webson and Edward Raff and Colin Raffel}, year={2022}, eprint={2211.01786}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```