--- base_model: - Qwen/Qwen2.5-14B license: apache-2.0 model-index: - name: Virtuoso-Small results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 79.35 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 50.4 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 34.29 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 11.52 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 14.44 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 46.57 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small name: Open LLM Leaderboard --- # Virtuoso-Small-RK3588-1.1.2 This version of Virtuoso-Small has been converted to run on the RK3588 NPU using ['w8a8', 'w8a8_g128', 'w8a8_g256', 'w8a8_g512'] quantization. This model has been optimized with the following LoRA: Compatible with RKLLM version: 1.1.4 ## Useful links: [Official RKLLM GitHub](https://github.com/airockchip/rknn-llm) [RockhipNPU Reddit](https://reddit.com/r/RockchipNPU) [EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/) Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531) Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit # Original Model Card for base model, Virtuoso-Small, below:
Virtuoso-Small
GGUF Available [Here](https://huggingface.co/arcee-ai/Virtuoso-Small-GGUF) # Virtuoso-Small Virtuoso-Small is the debut public release of the Virtuoso series of models by Arcee.ai, designed to bring cutting-edge generative AI capabilities to organizations and developers in a compact, efficient form. With 14 billion parameters, Virtuoso-Small is an accessible entry point for high-quality instruction-following, complex reasoning, and business-oriented generative AI tasks. Its larger siblings, Virtuoso-Medium and Virtuoso-Large, offer even greater capabilities and are available via API at [models.arcee.ai](https://models.arcee.ai). ## Key Features - **Compact and Efficient**: With 14 billion parameters, Virtuoso-Small provides a high-performance solution optimized for smaller hardware configurations without sacrificing quality. - **Business-Oriented**: Tailored for use cases such as customer support, content creation, and technical assistance, Virtuoso-Small meets the demands of modern enterprises. - **Scalable Ecosystem**: Part of the Virtuoso series, Virtuoso-Small is fully interoperable with its larger siblings, Forte and Prime, enabling seamless scaling as your needs grow. --- ## Deployment Options Virtuoso-Small is available under the Apache-2.0 license and can be deployed locally or accessed through an API at [models.arcee.ai](https://models.arcee.ai). For larger-scale or more demanding applications, consider Virtuoso-Forte or Virtuoso-Prime. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_arcee-ai__Virtuoso-Small) | Metric |Value| |-------------------|----:| |Avg. |39.43| |IFEval (0-Shot) |79.35| |BBH (3-Shot) |50.40| |MATH Lvl 5 (4-Shot)|34.29| |GPQA (0-shot) |11.52| |MuSR (0-shot) |14.44| |MMLU-PRO (5-shot) |46.57|