--- language: - id license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - magic_data - TITML metrics: - wer base_model: openai/whisper-medium model-index: - name: Whisper Medium Indonesian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 id type: mozilla-foundation/common_voice_11_0 config: id split: test metrics: - type: wer value: 3.8273540533062804 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs id_id type: google/fleurs config: id_id split: test metrics: - type: wer value: 9.74 name: Wer --- # Whisper Medium Indonesian This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Indonesian mozilla-foundation/common_voice_11_0, magic_data, titml and google/fleurs dataset. It achieves the following results: ### CV11 test split: - Loss: 0.0698 - Wer: 3.8274 ### Google/fleurs test split: - Wer: 9.74 ## Usage ```python from transformers import pipeline transcriber = pipeline( "automatic-speech-recognition", model="cahya/whisper-medium-id" ) transcriber.model.config.forced_decoder_ids = ( transcriber.tokenizer.get_decoder_prompt_ids( language="id" task="transcribe" ) ) transcription = transcriber("my_audio_file.mp3") ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0427 | 0.33 | 1000 | 0.0664 | 4.3807 | | 0.042 | 0.66 | 2000 | 0.0658 | 3.9426 | | 0.0265 | 0.99 | 3000 | 0.0657 | 3.8274 | | 0.0211 | 1.32 | 4000 | 0.0679 | 3.8366 | | 0.0212 | 1.66 | 5000 | 0.0682 | 3.8412 | | 0.0206 | 1.99 | 6000 | 0.0683 | 3.8689 | | 0.0166 | 2.32 | 7000 | 0.0711 | 3.9657 | | 0.0095 | 2.65 | 8000 | 0.0717 | 3.9980 | | 0.0122 | 2.98 | 9000 | 0.0714 | 3.9795 | | 0.0049 | 3.31 | 10000 | 0.0720 | 3.9887 | ## Evaluation We evaluated the model using the test split of two datasets, the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) and the [Google Fleurs](https://huggingface.co/datasets/google/fleurs). As Whisper can transcribe casing and punctuation, we also evaluate its performance using raw and normalized text. (lowercase + removal of punctuations). The results are as follows: ### Common Voice 11 | | WER | |---------------------------------------------------------------------------|------| | [cahya/whisper-medium-id](https://huggingface.co/cahya/whisper-medium-id) | 3.83 | | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 12.62 | ### Google/Fleurs | | WER | |-------------------------------------------------------------------------------------------------------------|------| | [cahya/whisper-medium-id](https://huggingface.co/cahya/whisper-medium-id) | 9.74 | | [cahya/whisper-medium-id](https://huggingface.co/cahya/whisper-medium-id) + text normalization | tbc | | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 10.2 | | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) + text normalization | tbc | | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2