--- language: - id license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - magic_data - TITML metrics: - wer model-index: - name: Whisper Medium Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 id type: mozilla-foundation/common_voice_11_0 config: id split: test metrics: - name: Wer type: wer value: 3.993359771281011 --- # Whisper Medium Indonesian This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0, magic_data, titml id dataset. It achieves the following results on the evaluation set: - Loss: 0.0698 - Wer: 3.9934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0252 | 0.35 | 1000 | 0.0733 | 4.4822 | | 0.0222 | 0.7 | 2000 | 0.0698 | 4.3392 | | 0.0166 | 1.06 | 3000 | 0.0696 | 4.2378 | | 0.0117 | 1.41 | 4000 | 0.0679 | 4.0810 | | 0.0295 | 1.76 | 5000 | 0.0671 | 4.0856 | | 0.0147 | 2.11 | 6000 | 0.0690 | 4.0302 | | 0.0157 | 2.47 | 7000 | 0.0698 | 3.9934 | | 0.0113 | 2.82 | 8000 | 0.0698 | 4.0302 | | 0.0101 | 3.17 | 9000 | 0.0707 | 4.0579 | | 0.0076 | 3.52 | 10000 | 0.0708 | 4.0625 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2