--- library_name: transformers license: mit base_model: cardiffnlp/twitter-roberta-large-hate-latest tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-large-hate-latest-hinglish-binary results: [] --- # twitter-roberta-large-hate-latest-hinglish-binary This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8288 - Accuracy: 0.6779 - Precision: 0.6455 - Recall: 0.6188 - F1: 0.6218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6392 | 0.9709 | 25 | 0.6656 | 0.6376 | 0.3188 | 0.5 | 0.3894 | | 0.63 | 1.9806 | 51 | 0.7095 | 0.6403 | 0.8197 | 0.5038 | 0.3975 | | 0.6117 | 2.9903 | 77 | 0.6043 | 0.6921 | 0.6720 | 0.6174 | 0.6176 | | 0.5974 | 4.0 | 103 | 0.6540 | 0.6730 | 0.6787 | 0.5667 | 0.5369 | | 0.5512 | 4.9709 | 128 | 0.6216 | 0.6948 | 0.6745 | 0.6228 | 0.6243 | | 0.5162 | 5.9806 | 154 | 0.6164 | 0.7057 | 0.6873 | 0.6394 | 0.6438 | | 0.4525 | 6.9903 | 180 | 0.6715 | 0.6948 | 0.6757 | 0.6211 | 0.6221 | | 0.4207 | 8.0 | 206 | 0.7581 | 0.7084 | 0.6844 | 0.6562 | 0.6620 | | 0.3381 | 8.9709 | 231 | 0.7439 | 0.6812 | 0.6560 | 0.6575 | 0.6567 | | 0.3016 | 9.7087 | 250 | 0.7481 | 0.7030 | 0.6762 | 0.6649 | 0.6688 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0