--- library_name: transformers license: mit base_model: cardiffnlp/twitter-roberta-large-hate-latest tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-large-hate-latest-offensive-eval-kn results: [] --- # twitter-roberta-large-hate-latest-offensive-eval-kn This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8543 - Accuracy: 0.7391 - Precision: 0.4215 - Recall: 0.3968 - F1: 0.4020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9082 | 0.9968 | 157 | 0.8529 | 0.7286 | 0.3746 | 0.3354 | 0.3312 | | 0.7593 | 2.0 | 315 | 0.7818 | 0.7393 | 0.5160 | 0.3778 | 0.3767 | | 0.7264 | 2.9968 | 472 | 0.7640 | 0.7464 | 0.4450 | 0.3812 | 0.3861 | | 0.6998 | 4.0 | 630 | 0.7941 | 0.7464 | 0.4461 | 0.4106 | 0.4218 | | 0.5066 | 4.9968 | 787 | 0.8636 | 0.7518 | 0.4668 | 0.4156 | 0.4276 | | 0.5164 | 6.0 | 945 | 0.8747 | 0.7482 | 0.4391 | 0.4342 | 0.4342 | | 0.4098 | 6.9968 | 1102 | 0.9078 | 0.7446 | 0.4366 | 0.4324 | 0.4334 | | 0.3556 | 8.0 | 1260 | 0.9286 | 0.7393 | 0.4279 | 0.4304 | 0.4282 | | 0.3974 | 8.9968 | 1417 | 0.9444 | 0.7446 | 0.4434 | 0.4406 | 0.4411 | | 0.318 | 9.9683 | 1570 | 0.9597 | 0.7411 | 0.4352 | 0.4370 | 0.4352 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0