--- library_name: transformers license: mit base_model: cardiffnlp/twitter-roberta-large-hate-latest tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-large-hate-latest-roman-urdu-binary results: [] --- # twitter-roberta-large-hate-latest-roman-urdu-binary This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4537 - Accuracy: 0.9016 - Precision: 0.9015 - Recall: 0.9007 - F1: 0.9011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4956 | 0.9912 | 56 | 0.4878 | 0.8215 | 0.8208 | 0.8202 | 0.8205 | | 0.3268 | 2.0 | 113 | 0.3194 | 0.8652 | 0.8699 | 0.8611 | 0.8632 | | 0.2555 | 2.9912 | 169 | 0.3241 | 0.8839 | 0.8894 | 0.8798 | 0.8822 | | 0.1832 | 4.0 | 226 | 0.3184 | 0.8914 | 0.8930 | 0.8891 | 0.8904 | | 0.1283 | 4.9912 | 282 | 0.3375 | 0.8976 | 0.9028 | 0.8939 | 0.8962 | | 0.0815 | 6.0 | 339 | 0.3645 | 0.8939 | 0.8937 | 0.8955 | 0.8937 | | 0.0961 | 6.9912 | 395 | 0.3691 | 0.9001 | 0.9004 | 0.8988 | 0.8995 | | 0.0544 | 8.0 | 452 | 0.4781 | 0.8901 | 0.8895 | 0.8910 | 0.8899 | | 0.0404 | 8.9912 | 508 | 0.4209 | 0.9089 | 0.9104 | 0.9068 | 0.9081 | | 0.0359 | 9.9115 | 560 | 0.4259 | 0.9051 | 0.9051 | 0.9042 | 0.9046 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0