--- datasets: - cardiffnlp/tweet_topic_multi metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2021-topic-multi results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_multi type: cardiffnlp/tweet_topic_multi split: test_2021 metrics: - name: Micro F1 (cardiffnlp/tweet_topic_multi) type: micro_f1_cardiffnlp/tweet_topic_multi value: 0.7531433361274099 - name: Macro F1 (cardiffnlp/tweet_topic_multi) type: micro_f1_cardiffnlp/tweet_topic_multi value: 0.562239700912053 - name: Accuracy (cardiffnlp/tweet_topic_multi) type: accuracy_cardiffnlp/tweet_topic_multi value: 0.5288862418106015 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-roberta-base-dec2021-topic-multi This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the [`cardiffnlp/tweet_topic_multi`](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train_all` and parameters have been tuned on the validation split `validation_2021`. Following metrics are achieved on the test split `test_2021` ([link](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-topic-multi/raw/main/metric.json)). - F1 (micro): 0.7531433361274099 - F1 (macro): 0.562239700912053 - Accuracy: 0.5288862418106015 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-dec2021-topic-multi", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```