--- language: - en - pt license: mit tags: - generated_from_trainer datasets: - cartesinus/iva_mt_wslot metrics: - bleu pipeline_tag: translation base_model: facebook/m2m100_418M model-index: - name: iva_mt_wslot-m2m100_418M-en-pt results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: iva_mt_wslot type: iva_mt_wslot config: en-pt split: validation args: en-pt metrics: - type: bleu value: 67.0512 name: Bleu --- # iva_mt_wslot-m2m100_418M-en-pt This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the iva_mt_wslot dataset. It achieves the following results on the evaluation set: - Loss: 0.0119 - Bleu: 67.0512 - Gen Len: 20.3665 ## Model description More information needed ## How to use First please make sure to install `pip install transformers`. First download model: ```python from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer import torch def translate(input_text, lang): input_ids = tokenizer(input_text, return_tensors="pt") generated_tokens = model.generate(**input_ids, forced_bos_token_id=tokenizer.get_lang_id(lang)) return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) model_name = "cartesinus/iva_mt_wslot-m2m100_418M-0.1.0-en-pt" tokenizer = M2M100Tokenizer.from_pretrained(model_name, src_lang="en", tgt_lang="pt") model = M2M100ForConditionalGeneration.from_pretrained(model_name) ``` Then you can translate either plain text like this: ```python print(translate("set the temperature on my thermostat", "pt")) ``` or you can translate with slot annotations that will be restored in tgt language: ```python print(translate("wake me up at nine am on friday", "pt")) ``` Limitations of translation with slot transfer: 1) Annotated words must be placed between semi-xml tags like this "this is \example\" 2) There is no closing tag for example "\<\a\>" in the above example - this is done on purpose to omit problems with backslash escape 3) If the sentence consists of more than one slot then simply use the next alphabet letter. For example "this is \example\ with more than \one\ slot" 4) Please do not add space before the first or last annotated word because this particular model was trained this way and it most probably will lower its results ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.016 | 1.0 | 1842 | 0.0132 | 62.2701 | 20.1343 | | 0.0103 | 2.0 | 3684 | 0.0117 | 65.7139 | 20.2191 | | 0.0076 | 3.0 | 5526 | 0.0116 | 65.578 | 20.0926 | | 0.0059 | 4.0 | 7368 | 0.0115 | 66.3728 | 20.4514 | | 0.0043 | 5.0 | 9210 | 0.0117 | 65.8861 | 20.3781 | | 0.0033 | 6.0 | 11052 | 0.0117 | 66.6496 | 20.4383 | | 0.0026 | 7.0 | 12894 | 0.0119 | 67.0512 | 20.3665 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3 ## Citation If you use this model, please cite the following: ``` @article{Sowanski2023SlotLI, title={Slot Lost in Translation? Not Anymore: A Machine Translation Model for Virtual Assistants with Type-Independent Slot Transfer}, author={Marcin Sowanski and Artur Janicki}, journal={2023 30th International Conference on Systems, Signals and Image Processing (IWSSIP)}, year={2023}, pages={1-5} } ```