--- language: - en license: mit tags: - generated_from_trainer - nlu - intent-classification datasets: - AmazonScience/massive metrics: - accuracy - f1 base_model: xlm-roberta-base model-index: - name: xlm-r-base-amazon-massive-intent results: - task: type: intent-classification name: intent-classification dataset: name: MASSIVE type: AmazonScience/massive split: test metrics: - type: f1 value: 0.8775 name: F1 --- # xlm-r-base-amazon-massive-intent This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on [Amazon Massive](https://huggingface.co/datasets/AmazonScience/massive) dataset (only en-US subset). It achieves the following results on the evaluation set: - Loss: 0.5439 - Accuracy: 0.8775 - F1: 0.8775 ## Results | domain | train-accuracy | test-accuracy | |:------:|:--------------:|:-------------:| |alarm|0.967|0.9846| |audio|0.7458|0.659| |calendar|0.9797|0.3181| |cooking|0.9714|0.9571| |datetime|0.9777|0.9402| |email|0.9727|0.9296| |general|0.8952|0.5949| |iot|0.9329|0.9122| |list|0.9792|0.9538| |music|0.9355|0.8837| |news|0.9607|0.8764| |play|0.9419|0.874| |qa|0.9677|0.8591| |recommendation|0.9515|0.8764| |social|0.9671|0.8932| |takeaway|0.9192|0.8478| |transport|0.9425|0.9193| |weather|0.9895|0.93| ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.734 | 1.0 | 720 | 1.1883 | 0.7196 | 0.7196 | | 1.2774 | 2.0 | 1440 | 0.7162 | 0.8342 | 0.8342 | | 0.6301 | 3.0 | 2160 | 0.5817 | 0.8672 | 0.8672 | | 0.4901 | 4.0 | 2880 | 0.5555 | 0.8770 | 0.8770 | | 0.3398 | 5.0 | 3600 | 0.5439 | 0.8775 | 0.8775 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1 ## Citation ```bibtex @article{kubis2023back, title={Back Transcription as a Method for Evaluating Robustness of Natural Language Understanding Models to Speech Recognition Errors}, author={Kubis, Marek and Sk{\'o}rzewski, Pawe{\l} and Sowa{\'n}ski, Marcin and Zi{\k{e}}tkiewicz, Tomasz}, journal={arXiv preprint arXiv:2310.16609}, year={2023} eprint={2310.16609}, archivePrefix={arXiv}, } ```