--- base_model: indobenchmark/indobert-base-p2 datasets: [] language: [] library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:133472 - loss:SoftmaxLoss widget: - source_sentence: Dua tim anak-anak, yang satu berwarna hijau dan yang lainnya berwarna merah, bermain bersama dalam permainan Rugby saat hujan. sentences: - Tiga orang berada di dalam perahu. - seorang pria di atas sepeda - Tim rugby anak-anak, merah versus hijau bermain di tengah hujan. - source_sentence: Seorang pria melakukan perawatan di rel kereta api sentences: - Dua orang terlibat dalam percakapan. - Ada seorang wanita melakukan pekerjaan di rel kereta api. - orang-orang duduk di bar - source_sentence: Sepasang suami istri dengan pakaian renang berjalan di pantai. sentences: - pasangan itu duduk di dalam - Pria itu sedang makan. - Dua orang sedang berpose untuk difoto. - source_sentence: Dua orang sedang duduk di samping api unggun bertumpuk kayu di malam hari. sentences: - Seseorang memegang jeruk dan berjalan - Orang-orang duduk di luar di malam hari. - Orang-orang berada di luar. - source_sentence: Wanita profesional di meja pendaftaran acara sementara pria berjas melihat. sentences: - Orang-orang berkumpul untuk sebuah acara. - Seorang wanita sedang berjalan menuju taman. - Ada seorang anak yang tersenyum untuk difoto. model-index: - name: SentenceTransformer based on indobenchmark/indobert-base-p2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.23146247451934734 name: Pearson Cosine - type: spearman_cosine value: 0.23182555096720683 name: Spearman Cosine - type: pearson_manhattan value: 0.19847600869622337 name: Pearson Manhattan - type: spearman_manhattan value: 0.2038189662328075 name: Spearman Manhattan - type: pearson_euclidean value: 0.198744291061789 name: Pearson Euclidean - type: spearman_euclidean value: 0.20385658228775938 name: Spearman Euclidean - type: pearson_dot value: 0.2561502821889763 name: Pearson Dot - type: spearman_dot value: 0.25101474046220823 name: Spearman Dot - type: pearson_max value: 0.2561502821889763 name: Pearson Max - type: spearman_max value: 0.25101474046220823 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.5914831439397401 name: Pearson Cosine - type: spearman_cosine value: 0.5978838704506128 name: Spearman Cosine - type: pearson_manhattan value: 0.5131648451956073 name: Pearson Manhattan - type: spearman_manhattan value: 0.5147175261736068 name: Spearman Manhattan - type: pearson_euclidean value: 0.5942850778734059 name: Pearson Euclidean - type: spearman_euclidean value: 0.6001963453484881 name: Spearman Euclidean - type: pearson_dot value: 0.5880400881430983 name: Pearson Dot - type: spearman_dot value: 0.5933998114680769 name: Spearman Dot - type: pearson_max value: 0.5942850778734059 name: Pearson Max - type: spearman_max value: 0.6001963453484881 name: Spearman Max --- # SentenceTransformer based on indobenchmark/indobert-base-p2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("cassador/indobert-snli-v1") # Run inference sentences = [ 'Wanita profesional di meja pendaftaran acara sementara pria berjas melihat.', 'Orang-orang berkumpul untuk sebuah acara.', 'Ada seorang anak yang tersenyum untuk difoto.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.2315 | | **spearman_cosine** | **0.2318** | | pearson_manhattan | 0.1985 | | spearman_manhattan | 0.2038 | | pearson_euclidean | 0.1987 | | spearman_euclidean | 0.2039 | | pearson_dot | 0.2562 | | spearman_dot | 0.251 | | pearson_max | 0.2562 | | spearman_max | 0.251 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.5915 | | **spearman_cosine** | **0.5979** | | pearson_manhattan | 0.5132 | | spearman_manhattan | 0.5147 | | pearson_euclidean | 0.5943 | | spearman_euclidean | 0.6002 | | pearson_dot | 0.588 | | spearman_dot | 0.5934 | | pearson_max | 0.5943 | | spearman_max | 0.6002 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 133,472 training samples * Columns: <code>label</code>, <code>kalimat1</code>, and <code>kalimat2</code> * Approximate statistics based on the first 1000 samples: | | label | kalimat1 | kalimat2 | |:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | int | string | string | | details | <ul><li>0: ~50.00%</li><li>1: ~50.00%</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.47 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.62 tokens</li><li>max: 22 tokens</li></ul> | * Samples: | label | kalimat1 | kalimat2 | |:---------------|:------------------------------------------------------------------|:----------------------------------------------------------------| | <code>0</code> | <code>Seseorang di atas kuda melompati pesawat yang rusak.</code> | <code>Seseorang sedang makan malam, memesan telur dadar.</code> | | <code>1</code> | <code>Seseorang di atas kuda melompati pesawat yang rusak.</code> | <code>Seseorang berada di luar ruangan, di atas kuda.</code> | | <code>1</code> | <code>Anak-anak tersenyum dan melambai ke kamera</code> | <code>Ada anak-anak yang hadir</code> | * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) ### Evaluation Dataset #### Unnamed Dataset * Size: 6,607 evaluation samples * Columns: <code>label</code>, <code>kalimat1</code>, and <code>kalimat2</code> * Approximate statistics based on the first 1000 samples: | | label | kalimat1 | kalimat2 | |:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | int | string | string | | details | <ul><li>0: ~50.10%</li><li>1: ~49.90%</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.87 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.45 tokens</li><li>max: 27 tokens</li></ul> | * Samples: | label | kalimat1 | kalimat2 | |:---------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------| | <code>1</code> | <code>Dua wanita berpelukan sambil memegang paket untuk pergi.</code> | <code>Dua wanita memegang paket.</code> | | <code>0</code> | <code>Dua wanita berpelukan sambil memegang paket untuk pergi.</code> | <code>Orang-orang berkelahi di luar toko makanan.</code> | | <code>1</code> | <code>Dua anak kecil berbaju biru, satu dengan nomor 9 dan satu dengan nomor 2 berdiri di tangga kayu di kamar mandi dan mencuci tangan di wastafel.</code> | <code>Dua anak dengan kaus bernomor mencuci tangan mereka.</code> | * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:-----:|:----:|:-----------------------:|:------------------------:| | 0 | 0 | 0.2318 | - | | 2.0 | 8342 | - | 0.5979 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.3.0+cu121 - Accelerate: 0.31.0 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers and SoftmaxLoss ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->