---
base_model: indobenchmark/indobert-base-p2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:133472
- loss:SoftmaxLoss
widget:
- source_sentence: Dua tim anak-anak, yang satu berwarna hijau dan yang lainnya berwarna
    merah, bermain bersama dalam permainan Rugby saat hujan.
  sentences:
  - Tiga orang berada di dalam perahu.
  - seorang pria di atas sepeda
  - Tim rugby anak-anak, merah versus hijau bermain di tengah hujan.
- source_sentence: Seorang pria melakukan perawatan di rel kereta api
  sentences:
  - Dua orang terlibat dalam percakapan.
  - Ada seorang wanita melakukan pekerjaan di rel kereta api.
  - orang-orang duduk di bar
- source_sentence: Sepasang suami istri dengan pakaian renang berjalan di pantai.
  sentences:
  - pasangan itu duduk di dalam
  - Pria itu sedang makan.
  - Dua orang sedang berpose untuk difoto.
- source_sentence: Dua orang sedang duduk di samping api unggun bertumpuk kayu di
    malam hari.
  sentences:
  - Seseorang memegang jeruk dan berjalan
  - Orang-orang duduk di luar di malam hari.
  - Orang-orang berada di luar.
- source_sentence: Wanita profesional di meja pendaftaran acara sementara pria berjas
    melihat.
  sentences:
  - Orang-orang berkumpul untuk sebuah acara.
  - Seorang wanita sedang berjalan menuju taman.
  - Ada seorang anak yang tersenyum untuk difoto.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.23146247451934734
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.23182555096720683
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.19847600869622337
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.2038189662328075
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.198744291061789
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.20385658228775938
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.2561502821889763
      name: Pearson Dot
    - type: spearman_dot
      value: 0.25101474046220823
      name: Spearman Dot
    - type: pearson_max
      value: 0.2561502821889763
      name: Pearson Max
    - type: spearman_max
      value: 0.25101474046220823
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.5914831439397401
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5978838704506128
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5131648451956073
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.5147175261736068
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5942850778734059
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6001963453484881
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5880400881430983
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5933998114680769
      name: Spearman Dot
    - type: pearson_max
      value: 0.5942850778734059
      name: Pearson Max
    - type: spearman_max
      value: 0.6001963453484881
      name: Spearman Max
---

# SentenceTransformer based on indobenchmark/indobert-base-p2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cassador/indobert-snli-v1")
# Run inference
sentences = [
    'Wanita profesional di meja pendaftaran acara sementara pria berjas melihat.',
    'Orang-orang berkumpul untuk sebuah acara.',
    'Ada seorang anak yang tersenyum untuk difoto.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.2315     |
| **spearman_cosine** | **0.2318** |
| pearson_manhattan   | 0.1985     |
| spearman_manhattan  | 0.2038     |
| pearson_euclidean   | 0.1987     |
| spearman_euclidean  | 0.2039     |
| pearson_dot         | 0.2562     |
| spearman_dot        | 0.251      |
| pearson_max         | 0.2562     |
| spearman_max        | 0.251      |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.5915     |
| **spearman_cosine** | **0.5979** |
| pearson_manhattan   | 0.5132     |
| spearman_manhattan  | 0.5147     |
| pearson_euclidean   | 0.5943     |
| spearman_euclidean  | 0.6002     |
| pearson_dot         | 0.588      |
| spearman_dot        | 0.5934     |
| pearson_max         | 0.5943     |
| spearman_max        | 0.6002     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 133,472 training samples
* Columns: <code>label</code>, <code>kalimat1</code>, and <code>kalimat2</code>
* Approximate statistics based on the first 1000 samples:
  |         | label                                           | kalimat1                                                                          | kalimat2                                                                         |
  |:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | int                                             | string                                                                            | string                                                                           |
  | details | <ul><li>0: ~50.00%</li><li>1: ~50.00%</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.47 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.62 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
  | label          | kalimat1                                                          | kalimat2                                                        |
  |:---------------|:------------------------------------------------------------------|:----------------------------------------------------------------|
  | <code>0</code> | <code>Seseorang di atas kuda melompati pesawat yang rusak.</code> | <code>Seseorang sedang makan malam, memesan telur dadar.</code> |
  | <code>1</code> | <code>Seseorang di atas kuda melompati pesawat yang rusak.</code> | <code>Seseorang berada di luar ruangan, di atas kuda.</code>    |
  | <code>1</code> | <code>Anak-anak tersenyum dan melambai ke kamera</code>           | <code>Ada anak-anak yang hadir</code>                           |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Evaluation Dataset

#### Unnamed Dataset


* Size: 6,607 evaluation samples
* Columns: <code>label</code>, <code>kalimat1</code>, and <code>kalimat2</code>
* Approximate statistics based on the first 1000 samples:
  |         | label                                           | kalimat1                                                                          | kalimat2                                                                         |
  |:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | int                                             | string                                                                            | string                                                                           |
  | details | <ul><li>0: ~50.10%</li><li>1: ~49.90%</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.87 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.45 tokens</li><li>max: 27 tokens</li></ul> |
* Samples:
  | label          | kalimat1                                                                                                                                                    | kalimat2                                                          |
  |:---------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|
  | <code>1</code> | <code>Dua wanita berpelukan sambil memegang paket untuk pergi.</code>                                                                                       | <code>Dua wanita memegang paket.</code>                           |
  | <code>0</code> | <code>Dua wanita berpelukan sambil memegang paket untuk pergi.</code>                                                                                       | <code>Orang-orang berkelahi di luar toko makanan.</code>          |
  | <code>1</code> | <code>Dua anak kecil berbaju biru, satu dengan nomor 9 dan satu dengan nomor 2 berdiri di tangga kayu di kamar mandi dan mencuci tangan di wastafel.</code> | <code>Dua anak dengan kaus bernomor mencuci tangan mereka.</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:-----:|:----:|:-----------------------:|:------------------------:|
| 0     | 0    | 0.2318                  | -                        |
| 2.0   | 8342 | -                       | 0.5979                   |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->