--- license: llama3 base_model: catallama/CataLlama-v0.1-Base tags: - llama - llama-3 - Catalan model-index: - name: CataLlama-v0.1-Instruct-SFT results: [] datasets: - catallama/Catalan-Instruct language: - ca - en pipeline_tag: text-generation --- # NOTE: [CataLlama-v0.2](https://huggingface.co/catallama/CataLlama-v0.2-Instruct-SFT-DPO-Merged) is out. Please use that one instead. ![](https://huggingface.co/catallama/CataLlama-v0.1-Instruct-DPO/resolve/main/CataLlama-v0.1.png) # NOTE: [CataLlama-v0.2](https://huggingface.co/catallama/CataLlama-v0.2-Instruct-SFT-DPO-Merged) is out. Please use that one instead. # CataLlama-v0.1-Instruct-SFT **CataLlama-v0.1-Instruct-SFT** is an instruct fine-tune of [catallama/CataLlama-v0.1-Base](https://huggingface.co/catallama/CataLlama-v0.1-Base) on the [catallama/Catalan-Instruct](https://huggingface.co/datasets/catallama/Catalan-Instruct) dataset. CataLlama was trained on roughly **445 million new tokens** in three separate stages. This is the 2nd stage of the training. The model shows improved proficiency with the Catalan language. **This is an instruction fine-tuned model proficient on the following tasks in Catalan** - *Information extraction (suitable for RAG)* - *Named Entity Recognition (NER)* - *Translation from English to Catalan and Catalan to English* - *Summarization - both short form and long form* - *Sentiment analysis* The model achieves a loss rate of 0.8528 on the validation dataset after two epochs. **NOTE:** The model was trained for one epoch on the `train` split of dataset and after manual evaluation, I decided to go for another epoch. The first epoch logs every 100 steps while the second epoch logs every 200 steps, but I am pasting the train and eval losses for both epochs bellow. *The `train` split of the dataset was shuffled before the second epoch. The `test` split dataset is identical in both epochs without shuffling* **Model developers** [Laurentiu Petrea](https://www.linkedin.com/in/laurentiupetrea/) based on Llama-3 from Meta. **Model Architecture** CataLlama is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and direct preference optimisation (DPO) to align with human preferences for helpfulness and safety. **License** The model uses the llama-3 license available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) ## Benchmarks | Benchmark | Value | | ------------------ | ------ | | MMLU 5 shot | 55.28 | | GSM8K cot 8 shot | 51.63 | ### Use with transformers See the snippet below for usage with Transformers: **The model follows the same prompt template as Llama-3 Instruct** ```python import transformers import torch model_id = "catallama/CataLlama-v0.1-Instruct-SFT" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "user", "content": "Ei com estàs avui?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) outputs = pipeline( prompt, max_new_tokens=1024, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## Training procedure The model was trained **with the same prompt template of Llama-3 Instruct**. The model was trained for two epochs on **6x A100 80GB GPUs using DeepSpeed ZeRO** State-3 without CPU offloading. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - distributed_type: multi-GPU - num_devices: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results **Epoch 1** | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0938 | 0.11 | 100 | 1.0779 | | 1.0186 | 0.22 | 200 | 1.0209 | | 1.0157 | 0.32 | 300 | 0.9808 | | 0.9588 | 0.43 | 400 | 0.9489 | | 0.9039 | 0.54 | 500 | 0.9244 | | 0.9111 | 0.65 | 600 | 0.9086 | | 0.8918 | 0.75 | 700 | 0.8961 | | 0.8971 | 0.86 | 800 | 0.8886 | | 0.8631 | 0.97 | 900 | 0.8846 | **Epoch 2** | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8002 | 0.22 | 200 | 0.8989 | | 0.8068 | 0.43 | 400 | 0.8835 | | 0.7722 | 0.65 | 600 | 0.8654 | | 0.7805 | 0.86 | 800 | 0.8528 | ## Intended Use **Note:** This model is not intended to beat benchmarks, but to demonstrate techniques for augmenting LLMs on new languages and preserve rare languages as part of our world heritage. **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.