--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'Review of Administrative and Disciplinary Records Recent administrative evaluations have revealed irregularities within key operational postings. Investigations were launched in key command areas such as Jalandhar and Secunderabad, focusing on personnel movement, access permissions, and communication lapses. Anomalies in operational reports indicated unauthorized sharing of personnel data with external parties, sparking concerns about internal security and discipline. The South Western Command and Central Military Headquarters are overseeing these investigations. Reports highlight a need for increased supervision of personnel involved in administrative roles, as lapses in information sharing protocols pose a significant risk to mission readiness. In response, administrative retraining programs focused on compliance, confidentiality, and secure communication have been implemented across all units. Improved oversight measures, such as enhanced access control protocols and personnel background checks, are being prioritized to prevent such breaches from occurring in the future. Specialized training sessions have been hosted at key logistical hubs to strengthen accountability and ensure all military officials understand their responsibilities.' - text: 'Advanced Technological Integration into Military Strategies To maintain strategic advantages, the military has integrated cutting-edge technological assets into operational strategies. Innovations such as advanced surveillance drones equipped with night vision cameras and AI-assisted threat detection have enhanced the military''s ability to track adversarial movements. These drones are deployed on both border operations and maritime patrols, enabling continuous and real-time intelligence-gathering without compromising operational security. Furthermore, electronic warfare units have been equipped with advanced jamming devices capable of disrupting electronic communication signals used by insurgents. This capability ensures that adversarial communication networks are neutralized during operational missions, reducing the ability of enemy cells to coordinate and launch attacks.' - text: 'Drones in Target Acquisition and Precision Strikes Beyond surveillance and reconnaissance, drones are increasingly being used in target acquisition and precision strike missions. The integration of guided munitions with UAVs allows for highly accurate strikes on key targets, including terrorist camps, weapons caches, and enemy fortifications. Drones like the Harpy and Predator have been used in similar missions, providing high-precision strikes while minimizing the risk to personnel. The use of drones for precision strikes significantly reduces the collateral damage typically associated with traditional airstrikes and ground-based artillery fire.' - text: 'Strengthening Army Resilience through Infrastructure Upgrades Recent initiatives to modernize military infrastructure are focusing on strategic roadways, railway networks, and key logistical hubs across Northern and Eastern theater areas. Troop movement flexibility has become vital as regional border security remains fragile. Construction projects have been prioritized near operational areas like Leh, Arunachal Pradesh, and parts of the Indo-Nepal border. Specialized engineering battalions are spearheading the construction of advanced bridges and all- weather roadways, particularly through challenging terrains such as the Himalayan foothills and desert corridors. The latest developments include high-capacity bridge-building technology, allowing troops and supplies to be moved rapidly even in the most inaccessible locations. The strategic development of these routes ensures the swift mobility of logistical support, troop reinforcements, and rapid response units. Furthermore, advancements in railway infrastructure are underway to support rapid troop deployment. Railway hubs near key operational zones are being modernized, with emphasis on dual-use infrastructure that allows both civilian and military operations to utilize these networks when necessary.' - text: 'Tactical Coordination and Training Joint training exercises involving armored and artillery units have been conducted to refine battlefield tactics. These exercises, held in the Thar Desert, simulated multi-front conflict scenarios, emphasizing coordination between various branches of the armed forces. Feedback from these exercises has led to the adoption of new operational guidelines, such as optimized deployment patterns for tanks and artillery systems. Post-exercise debriefings at Jodhpur Cantonment highlighted the importance of synchronized maneuvers in achieving tactical superiority.' metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9193548387096774 name: Accuracy --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 3 | | | 1 | | | 2 | | | 0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9194 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("chandanzeon/setfit_finetuned_iaf_98") # Run inference preds = model("Tactical Coordination and Training Joint training exercises involving armored and artillery units have been conducted to refine battlefield tactics. These exercises, held in the Thar Desert, simulated multi-front conflict scenarios, emphasizing coordination between various branches of the armed forces. Feedback from these exercises has led to the adoption of new operational guidelines, such as optimized deployment patterns for tanks and artillery systems. Post-exercise debriefings at Jodhpur Cantonment highlighted the importance of synchronized maneuvers in achieving tactical superiority.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:---------|:----| | Word count | 39 | 130.3317 | 475 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 49 | | 1 | 56 | | 2 | 49 | | 3 | 51 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0010 | 1 | 0.267 | - | | 0.0508 | 50 | 0.2533 | - | | 0.1016 | 100 | 0.2342 | - | | 0.1524 | 150 | 0.2272 | - | | 0.2033 | 200 | 0.2065 | - | | 0.2541 | 250 | 0.1573 | - | | 0.3049 | 300 | 0.1051 | - | | 0.3557 | 350 | 0.0546 | - | | 0.4065 | 400 | 0.011 | - | | 0.4573 | 450 | 0.004 | - | | 0.5081 | 500 | 0.0028 | - | | 0.5589 | 550 | 0.0023 | - | | 0.6098 | 600 | 0.0019 | - | | 0.6606 | 650 | 0.0015 | - | | 0.7114 | 700 | 0.0014 | - | | 0.7622 | 750 | 0.0014 | - | | 0.8130 | 800 | 0.0013 | - | | 0.8638 | 850 | 0.0012 | - | | 0.9146 | 900 | 0.0011 | - | | 0.9654 | 950 | 0.001 | - | | 1.0 | 984 | - | 0.0731 | | 1.0163 | 1000 | 0.001 | - | | 1.0671 | 1050 | 0.0009 | - | | 1.1179 | 1100 | 0.0009 | - | | 1.1687 | 1150 | 0.0008 | - | | 1.2195 | 1200 | 0.0008 | - | | 1.2703 | 1250 | 0.0008 | - | | 1.3211 | 1300 | 0.0008 | - | | 1.3720 | 1350 | 0.0007 | - | | 1.4228 | 1400 | 0.0007 | - | | 1.4736 | 1450 | 0.0007 | - | | 1.5244 | 1500 | 0.0007 | - | | 1.5752 | 1550 | 0.0006 | - | | 1.6260 | 1600 | 0.0006 | - | | 1.6768 | 1650 | 0.0006 | - | | 1.7276 | 1700 | 0.0006 | - | | 1.7785 | 1750 | 0.0006 | - | | 1.8293 | 1800 | 0.0006 | - | | 1.8801 | 1850 | 0.0006 | - | | 1.9309 | 1900 | 0.0006 | - | | 1.9817 | 1950 | 0.0005 | - | | 2.0 | 1968 | - | 0.0762 | | 2.0325 | 2000 | 0.0005 | - | | 2.0833 | 2050 | 0.0005 | - | | 2.1341 | 2100 | 0.0005 | - | | 2.1850 | 2150 | 0.0005 | - | | 2.2358 | 2200 | 0.0005 | - | | 2.2866 | 2250 | 0.0005 | - | | 2.3374 | 2300 | 0.0005 | - | | 2.3882 | 2350 | 0.0005 | - | | 2.4390 | 2400 | 0.0005 | - | | 2.4898 | 2450 | 0.0005 | - | | 2.5407 | 2500 | 0.0005 | - | | 2.5915 | 2550 | 0.0004 | - | | 2.6423 | 2600 | 0.0004 | - | | 2.6931 | 2650 | 0.0004 | - | | 2.7439 | 2700 | 0.0004 | - | | 2.7947 | 2750 | 0.0004 | - | | 2.8455 | 2800 | 0.0004 | - | | 2.8963 | 2850 | 0.0004 | - | | 2.9472 | 2900 | 0.0004 | - | | 2.9980 | 2950 | 0.0004 | - | | 3.0 | 2952 | - | 0.0786 | | 3.0488 | 3000 | 0.0004 | - | | 3.0996 | 3050 | 0.0004 | - | | 3.1504 | 3100 | 0.0004 | - | | 3.2012 | 3150 | 0.0004 | - | | 3.2520 | 3200 | 0.0004 | - | | 3.3028 | 3250 | 0.0004 | - | | 3.3537 | 3300 | 0.0004 | - | | 3.4045 | 3350 | 0.0004 | - | | 3.4553 | 3400 | 0.0004 | - | | 3.5061 | 3450 | 0.0004 | - | | 3.5569 | 3500 | 0.0003 | - | | 3.6077 | 3550 | 0.0004 | - | | 3.6585 | 3600 | 0.0004 | - | | 3.7093 | 3650 | 0.0004 | - | | 3.7602 | 3700 | 0.0003 | - | | 3.8110 | 3750 | 0.0003 | - | | 3.8618 | 3800 | 0.0004 | - | | 3.9126 | 3850 | 0.0003 | - | | 3.9634 | 3900 | 0.0003 | - | | 4.0 | 3936 | - | 0.0813 | | 4.0142 | 3950 | 0.0003 | - | | 4.0650 | 4000 | 0.0003 | - | | 4.1159 | 4050 | 0.0003 | - | | 4.1667 | 4100 | 0.0003 | - | | 4.2175 | 4150 | 0.0003 | - | | 4.2683 | 4200 | 0.0003 | - | | 4.3191 | 4250 | 0.0003 | - | | 4.3699 | 4300 | 0.0003 | - | | 4.4207 | 4350 | 0.0003 | - | | 4.4715 | 4400 | 0.0003 | - | | 4.5224 | 4450 | 0.0003 | - | | 4.5732 | 4500 | 0.0003 | - | | 4.6240 | 4550 | 0.0003 | - | | 4.6748 | 4600 | 0.0003 | - | | 4.7256 | 4650 | 0.0003 | - | | 4.7764 | 4700 | 0.0003 | - | | 4.8272 | 4750 | 0.0003 | - | | 4.8780 | 4800 | 0.0003 | - | | 4.9289 | 4850 | 0.0003 | - | | 4.9797 | 4900 | 0.0003 | - | | 5.0 | 4920 | - | 0.0804 | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.42.2 - PyTorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```