--- library_name: transformers license: mit base_model: charisgao/wnc-pretrain tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: side-info-model-output results: [] --- # side-info-model-output This model is a fine-tuned version of [charisgao/wnc-pretrain](https://huggingface.co/charisgao/wnc-pretrain) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7365 - Precision: 0.8178 - Recall: 0.92 - F1: 0.8659 - Accuracy: 0.8167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5017 | 0.8547 | 100 | 0.4694 | 0.8304 | 0.9118 | 0.8692 | 0.8194 | | 0.3786 | 1.7094 | 200 | 0.4741 | 0.7875 | 0.9265 | 0.8514 | 0.7871 | | 0.253 | 2.5641 | 300 | 0.7509 | 0.8087 | 0.9118 | 0.8571 | 0.8 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0