--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: pretrain_model results: [] --- # pretrain_model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6409 - Precision: 0.6385 - Recall: 0.6046 - F1: 0.6211 - Accuracy: 0.6354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6994 | 0.0061 | 250 | 0.6909 | 0.5946 | 0.1740 | 0.2692 | 0.5296 | | 0.6935 | 0.0122 | 500 | 0.6461 | 0.6368 | 0.5923 | 0.6138 | 0.6288 | | 0.6862 | 0.0184 | 750 | 0.6710 | 0.6268 | 0.6416 | 0.6341 | 0.6313 | | 0.6629 | 0.0245 | 1000 | 0.8414 | 0.5772 | 0.7777 | 0.6626 | 0.6056 | | 0.6729 | 0.0306 | 1250 | 0.6509 | 0.6373 | 0.5992 | 0.6177 | 0.6306 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3