--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2755 - Precision: 0.4545 - Recall: 0.0935 - F1: 0.1550 - Accuracy: 0.9109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3038 | 0.4292 | 100 | 0.2895 | 0.0 | 0.0 | 0.0 | 0.9125 | | 0.2835 | 0.8584 | 200 | 0.2731 | 0.0 | 0.0 | 0.0 | 0.9125 | | 0.2383 | 1.2876 | 300 | 0.2710 | 0.5606 | 0.0384 | 0.0719 | 0.9132 | | 0.2385 | 1.7167 | 400 | 0.2685 | 0.6786 | 0.0197 | 0.0383 | 0.9134 | | 0.2356 | 2.1459 | 500 | 0.2734 | 0.4466 | 0.0955 | 0.1574 | 0.9105 | | 0.2067 | 2.5751 | 600 | 0.2719 | 0.4703 | 0.0987 | 0.1631 | 0.9114 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0